RESUMO
Breast Cancer (BC) is one of the most common tumours, and is known for its ability to develop resistance to chemotherapeutic treatments. Autophagy has been linked to chemotherapeutic response in several types of cancer, highlighting its contribution to this process. However, the role of mitophagy, a selective form of autophagy responsible for damaged mitochondria degradation, in the response to therapies in BC is still unclear. In order to address this point, we analysed the role of mitophagy in the treatment of the most common anticancer drug, doxorubicin (DXR), in different models of BC, such as a luminal A subtype-BC cell line MCF7 cells, cultured in 2-Dimension (2D) or in 3-Dimension (3D), and the triple negative BC (TNBC) cell line MDA-MB-231. Through a microarray analysis, we identified a relationship between mitophagy gene expressions related to the canonical PINK1/Parkin-mediated pathway and DXR treatment in BC cells. Afterwards, we demonstrated that the PINK1/Parkin-dependent mitophagy is indeed induced following DXR treatment and that exogenous expression of a small non-coding RNA, the miRNA-218-5p, known to target mRNA of Parkin, was sufficient to inhibit the DXR-mediated mitophagy in MCF7 and in MDA-MB-231 cells, thereby increasing their sensitivity to DXR. Considering the current challenges involved in BC refractory to treatment, our work could provide a promising approach to prevent tumour resistance and recurrence, potentially leading to the development of an innovative approach to combine mitophagy inhibition and chemotherapy.
RESUMO
AMBRA1 is a crucial factor for nervous system development, and its function has been mainly associated with autophagy. It has been also linked to cell proliferation control, through its ability to regulate c-Myc and D-type cyclins protein levels, thus regulating G1-S transition. However, it remains still unknown whether AMBRA1 is differentially regulated during the cell cycle, and if this pro-autophagy protein exerts a direct role in controlling mitosis too. Here we show that AMBRA1 is phosphorylated during mitosis on multiple sites by CDK1 and PLK1, two mitotic kinases. Moreover, we demonstrate that AMBRA1 phosphorylation at mitosis is required for a proper spindle function and orientation, driven by NUMA1 protein. Indeed, we show that the localization and/or dynamics of NUMA1 are strictly dependent on AMBRA1 presence, phosphorylation and binding ability. Since spindle orientation is critical for tissue morphogenesis and differentiation, our findings could account for an additional role of AMBRA1 in development and cancer ontogenesis.
Assuntos
Proteínas Serina-Treonina Quinases , Fuso Acromático , Humanos , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Fuso Acromático/metabolismo , Proteínas de Ciclo Celular/metabolismo , Mitose , Ciclo Celular , Células HeLa , Proteína Quinase CDC2/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismoRESUMO
BACKGROUND: Maintaining healthy mitochondria is mandatory for muscle viability and function. An essential surveillance mechanism targeting defective and harmful mitochondria to degradation is the selective form of autophagy called mitophagy. Ambra1 is a multifaceted protein with well-known autophagic and mitophagic functions. However, the study of its role in adult tissues has been extremely limited due to the embryonic lethality caused by full-body Ambra1 deficiency. METHODS: To establish the role of Ambra1 as a positive regulator of mitophagy, we exploited in vivo overexpression of a mitochondria-targeted form of Ambra1 in skeletal muscle. To dissect the consequence of Ambra1 inactivation in skeletal muscle, we generated muscle-specific Ambra1 knockout (Ambra1fl/fl :Mlc1f-Cre) mice. Mitochondria-enriched fractions were obtained from muscles of fed and starved animals to investigate the dynamics of the mitophagic flux. RESULTS: Our data show that Ambra1 has a critical role in the mitophagic flux of adult murine skeletal muscle and that its genetic inactivation leads to mitochondria alterations and myofibre remodelling. Ambra1 overexpression in wild-type muscles is sufficient to enhance mitochondria clearance through the autophagy-lysosome system. Consistently with this, Ambra1-deficient muscles display an abnormal accumulation of the mitochondrial marker TOMM20 by +76% (n = 6-7; P < 0.05), a higher presence of myofibres with swollen mitochondria by +173% (n = 4; P < 0.05), and an alteration in the maintenance of the mitochondrial membrane potential and a 34% reduction in the mitochondrial respiratory complex I activity (n = 4; P < 0.05). Lack of Ambra1 in skeletal muscle leads to impaired mitophagic flux, without affecting the bulk autophagic process. This is due to a significantly decreased recruitment of DRP1 (n = 6-7 mice; P < 0.01) and Parkin (n = 6-7 mice; P < 0.05) to the mitochondrial compartment, when compared with controls. Ambra1-deficient muscles also show a marked dysregulation of the endolysosome compartment, as the incidence of myofibres with lysosomal accumulation is 20 times higher than wild-type muscles (n = 4; P < 0.05). Histologically, Ambra1-deficient muscles of both 3- and 6-month-old animals display a significant decrease of myofibre cross-sectional area and a 52% reduction in oxidative fibres (n = 6-7; P < 0.05), thus highlighting a role for Ambra1 in the proper structure and activity of skeletal muscle. CONCLUSIONS: Our study indicates that Ambra1 is critical for skeletal muscle mitophagy and for the proper maintenance of functional mitochondria.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Mitocôndrias , Mitofagia , Músculo Esquelético , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Autofagia , Lisossomos/metabolismo , Camundongos , Mitocôndrias/metabolismo , Mitofagia/genética , Músculo Esquelético/metabolismoRESUMO
Mitochondria are highly dynamics organelles that provide the necessary energy for cellular functions. However, when they are dysfunctional, they can, by contrast, be very harmful for the cell. Mitophagy ensures their recycling and preserves cell performance. This mechanism is particularly important in neurons because they use a lot of energy. Failed mitophagy can thus affect the development of neurons and lead to brain problems. In this regard, a tight regulation of this process is needed. In recent years microRNAs, as regulators of several biological processes, have attracted attention in the field of mitophagy. In this review, we focused on the studies that highlight the miRNAs implicated in the regulation of mitophagic pathways. In particular, we described the first study carried out 7 years ago, in the context of mitophagy during erythroid differentiation. Next, we have cited all the other works to date on microRNAs and mitophagy regulation. Finally, we have underlined the importance of these discoveries in order to define new therapeutic approaches in the context of age-related diseases involving mitochondrial dysfunctions, such as cancers and neurodegenerative diseases.
Assuntos
Proteínas Relacionadas à Autofagia/fisiologia , MicroRNAs/genética , Mitofagia/genética , Animais , Antagomirs/uso terapêutico , Hipóxia Celular/genética , Hipóxia Celular/fisiologia , Senescência Celular/genética , Senescência Celular/fisiologia , Humanos , Inflamação/genética , Inflamação/patologia , Mamíferos , MicroRNAs/antagonistas & inibidores , Neoplasias/genética , Neoplasias/patologia , Neoplasias/terapia , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , Doenças Neurodegenerativas/terapia , Neurônios/citologia , Proteínas Quinases/fisiologia , Estresse Fisiológico/genética , Estresse Fisiológico/fisiologia , Ubiquitina-Proteína Ligases/fisiologia , Ferimentos e Lesões/genética , Ferimentos e Lesões/patologiaRESUMO
Aging is characterized by the deterioration of different cellular and organismal structures and functions. A typical hallmark of the aging process is the accumulation of dysfunctional mitochondria and excess iron, leading to a vicious cycle that promotes cell and tissue damage, which ultimately contribute to organismal aging. Accordingly, altered mitochondrial quality control pathways such as mitochondrial autophagy (mitophagy) as well as altered iron homeostasis, with consequent iron overload, can accelerate the aging process and the development and progression of different age-associated disorders. In this review we first briefly introduce the aging process and summarize molecular mechanisms regulating mitophagy and iron homeostasis. We then provide an overview on how dysfunction of these two processes impact on aging and age-associated neurodegenerative disorders with a focus on Alzheimer's disease, Parkinson's disease and Amyotrophic Lateral Sclerosis. Finally, we summarize some recent evidence showing mechanistic links between iron metabolism and mitophagy and speculate on how regulating the crosstalk between the two processes may provide protective effects against aging and age-associated neuronal pathologies.
Assuntos
Envelhecimento , Doenças Cardiovasculares/metabolismo , Insuficiência Cardíaca/metabolismo , Ferro/metabolismo , Lisossomos/metabolismo , Mitocôndrias/metabolismo , Mitofagia/fisiologia , Neurônios/metabolismo , Doença de Alzheimer/metabolismo , Animais , Autofagia/fisiologia , Homeostase , Humanos , Oxigênio/metabolismo , Doença de Parkinson/metabolismo , FosforilaçãoRESUMO
Receptor-mediated mitophagy is a crucial process involved in mitochondria quality control. AMBRA1 is a mitophagy receptor for the selective removal of damaged mitochondria in mammalian cells. A critical unresolved issue is how AMBRA1-mediated mitophagy is controlled in response to cellular stress. Here, we investigated the role of BCL2-family proteins on AMBRA1-dependent mitophagy and showed that MCL1 delays AMBRA1-dependent mitophagy. Indeed, MCL1 overexpression is sufficient to inhibit recruitment to mitochondria of the E3 Ubiquitin ligase HUWE1, a crucial dynamic partner of AMBRA1, upon AMBRA1-mediated mitophagy induction. In addition, we found that during mitophagy induced by AMBRA1, MCL1 levels decreased but were sustained by inhibition of the GSK-3ß kinase, which delayed AMBRA1-mediated mitophagy. Also, we showed that MCL1 was phosphorylated by GSK-3ß at a conserved GSK-3 phosphorylation site (S159) during AMBRA1-mediated mitophagy and that this event was accompanied by HUWE1-dependent MCL1 degradation. Altogether, our results demonstrate that MCL1 stability is regulated by the kinase GSK-3ß and the E3 ubiquitin ligase HUWE1 in regulating AMBRA1-mediated mitophagy. Our work thus defines MCL1 as an upstream stress-sensitive protein, functional in AMBRA1-mediated mitophagy.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Mitofagia , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Antígenos CD34/metabolismo , Apoptose , Células Clonais , Glicogênio Sintase Quinase 3 beta/metabolismo , Células HeLa , Humanos , Células MCF-7 , Mitocôndrias/metabolismo , Modelos Biológicos , Fosforilação , Fosfosserina/metabolismo , Estabilidade Proteica , Transporte Proteico , Proteólise , UbiquitinaçãoRESUMO
Regulatory T cells (Treg) are necessary to maintain immunological tolerance and are key players in the control of autoimmune disease susceptibility. Expression of the transcription factor FOXP3 is essential for differentiation of Treg cells and indispensable for their suppressive function. However, there is still a lack of knowledge about the mechanisms underlying its regulation. Here, we demonstrate that pro-autophagy protein AMBRA1 is also a key modulator of T cells, regulating the complex network that leads to human Treg differentiation and maintenance. Indeed, through its ability to interact with the phosphatase PP2A, AMBRA1 promotes the stability of the transcriptional activator FOXO3, which, in turn, triggers FOXP3 transcription. Furthermore, we found that AMBRA1 plays a significant role in vivo by regulating Treg cell induction in mouse models of both tumor growth and multiple sclerosis, thus highlighting the role of AMBRA1 in the control of immune homeostasis.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Diferenciação Celular , Linfócitos T/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Células Cultivadas , Proteína Forkhead Box O3/genética , Proteína Forkhead Box O3/metabolismo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Células HeLa , Homeostase , Humanos , Células Jurkat , Camundongos , Camundongos Endogâmicos C57BL , Esclerose Múltipla/metabolismo , Proteína Fosfatase 2/metabolismo , Linfócitos T/citologiaRESUMO
The selective removal of undesired or damaged mitochondria by autophagy, known as mitophagy, is crucial for cellular homoeostasis, and prevents tumour diffusion, neurodegeneration and ageing. The pro-autophagic molecule AMBRA1 (autophagy/beclin-1 regulator-1) has been defined as a novel regulator of mitophagy in both PINK1/PARKIN-dependent and -independent systems. Here, we identified the E3 ubiquitin ligase HUWE1 as a key inducing factor in AMBRA1-mediated mitophagy, a process that takes place independently of the main mitophagy receptors. Furthermore, we show that mitophagy function of AMBRA1 is post-translationally controlled, upon HUWE1 activity, by a positive phosphorylation on its serine 1014. This modification is mediated by the IKKα kinase and induces structural changes in AMBRA1, thus promoting its interaction with LC3/GABARAP (mATG8) proteins and its mitophagic activity. Altogether, these results demonstrate that AMBRA1 regulates mitophagy through a novel pathway, in which HUWE1 and IKKα are key factors, shedding new lights on the regulation of mitochondrial quality control and homoeostasis in mammalian cells.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Quinase I-kappa B/genética , Mitofagia/genética , Proteínas Supressoras de Tumor/genética , Ubiquitina-Proteína Ligases/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Técnicas de Inativação de Genes , Células HeLa , Humanos , Quinase I-kappa B/metabolismo , Mitocôndrias/metabolismo , Fosforilação , Proteínas Quinases , Processamento de Proteína Pós-Traducional , Serina/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina-Proteína Ligases/metabolismoRESUMO
Therapeutic strategies are needed to protect dopaminergic neurons in Parkinson's disease (PD) patients. Oxidative stress caused by dopamine may play an important role in PD pathogenesis. Selective autophagy of mitochondria (mitophagy), mainly regulated by PINK1 and PARKIN, plays an important role in the maintenance of cell homeostasis. Mutations in those genes cause accumulation of damaged mitochondria, leading to nigral degeneration and early-onset PD. AMBRA1ActA is a fusion protein specifically expressed at the mitochondria, and whose expression has been shown to induce a powerful mitophagy in mammalian cells. Most importantly, the pro-autophagy factor AMBRA1 is sufficient to restore mitophagy in fibroblasts of PD patients carrying PINK1 and PARKIN mutations. In this study, we investigated the potential neuroprotective effect of AMBRA1-induced mitophagy against 6-hydroxydopamine (6-OHDA)- and rotenone-induced cell death in human neuroblastoma SH-SY5Y cells. We demonstrated that AMBRA1ActA overexpression was sufficient to induce mitochondrial clearance in SH-SY5Y cells. We found that apoptosis induced by 6-OHDA and rotenone was reversed by AMBRA1-induced mitophagy. Finally, transfection of SH-SY5Y cells with a vector encoding AMBRA1ActA significantly reduced 6-OHDA and rotenone-induced generation of reactive oxygen species (ROS). Altogether, our results indicate that AMBRA1ActA is able to induce mitophagy in SH-SY5Y cells in order to suppress oxidative stress and apoptosis induced by both 6-OHDA and rotenone. These results strongly suggest that AMBRA1 may have promising neuroprotective properties with an important role in limiting ROS-induced dopaminergic cell death, and the utmost potential to prevent PD or other neurodegenerative diseases associated with mitochondrial oxidative stress.
RESUMO
The efficacy of Ataxia-Telangiectasia Mutated (ATM) kinase signalling inhibition in cancer therapy is tempered by the identification of new emerging functions of ATM, which suggests that the role of this protein in cancer progression is complex. We recently demonstrated that this tumor suppressor gene could act as tumor promoting factor in HER2 (Human Epidermal Growth Factor Receptor 2) positive breast cancer. Herein we put in evidence that ATM expression sustains the proportion of cells with a stem-like phenotype, measured as the capability to form mammospheres, independently of HER2 expression levels. Transcriptomic analyses revealed that, in mammospheres, ATM modulates the expression of cell cycle-, DNA repair- and autophagy-related genes. Among these, the silencing of the autophagic gene, autophagy related 4C cysteine peptidase (ATG4C), impairs mammosphere formation similarly to ATM depletion. Conversely, ATG4C ectopic expression in cells silenced for ATM expression, rescues mammospheres growth. Finally, tumor array analyses, performed using public data, identify a significant correlation between ATM and ATG4C expression levels in all human breast cancer subtypes, except for the basal-like one.Overall, we uncover a new connection between ATM kinase and autophagy regulation in breast cancer. We demonstrate that, in breast cancer cells, ATM and ATG4C are essential drivers of mammosphere formation, suggesting that their targeting may improve current approaches to eradicate breast cancer cells with a stem-like phenotype.
Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas Relacionadas à Autofagia/biossíntese , Autofagia , Neoplasias da Mama/patologia , Cisteína Endopeptidases/biossíntese , Células-Tronco Neoplásicas/patologia , Autofagia/fisiologia , Western Blotting , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Feminino , Imunofluorescência , Regulação Neoplásica da Expressão Gênica/fisiologia , Humanos , Células-Tronco Neoplásicas/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da PolimeraseRESUMO
Macroautophagy/autophagy is a tightly regulated intracellular catabolic pathway involving the lysosomal degradation of cytoplasmic organelles and proteins to be recycled into metabolic precursors. AMBRA1 (autophagy and Beclin 1 regulator 1) has a central role in the autophagy signaling network; it acts upstream of MTORC1-dependent autophagy by stabilizing the kinase ULK1 (unc-51 like autophagy activating kinase 1) and by favoring autophagosome core complex formation. AMBRA1 also regulates the cell cycle by modulating the activity of the phosphatase PPP2/PP2A (protein phosphatase 2) and degradation of MYC. Of note, post-transcriptional regulation mediated by noncoding microRNAs (MIRNAs) contributes significantly to control autophagy. Here we describe a new role for the microRNA MIR7-3HG/MIR-7 as a potent autophagy inhibitor. Indeed, MIR7-3HG targets the 3' untranslated region (UTR) of AMBRA1 mRNA, inducing a decrease of both AMBRA1 mRNA and protein levels, and thus causing a block in autophagy. Furthermore, MIR7-3HG, through AMBRA1 downregulation, prevents MYC dephosphorylation, establishing a positive feedback for its own transcription. These data suggest a new and interesting role of MIR7-3HG as an anti-autophagic MIRNA that may affect oncogenesis through the regulation of the tumor suppressor AMBRA1.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Autofagia , Regulação Neoplásica da Expressão Gênica , Proteínas Proto-Oncogênicas c-myc/metabolismo , RNA Longo não Codificante/metabolismo , Regiões 3' não Traduzidas/genética , Células A549 , Proteínas Adaptadoras de Transdução de Sinal/genética , Autofagia/genética , Sequência de Bases , Proliferação de Células/genética , Simulação por Computador , Regulação para Baixo/genética , Células HEK293 , Células HeLa , Humanos , Modelos Biológicos , Fosforilação , Fosfosserina/metabolismo , RNA Longo não Codificante/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismoRESUMO
Autophagy and apoptosis are 2 stress-response mechanisms that are closely interconnected. However, the molecular interplays between these 2 pathways remain to be clarified. Here we report that the crucial proautophagic factor AMBRA1 can act as a positive mediator of mitochondrial apoptosis. Indeed, we show that, in a proapoptotic positive feedback loop, the C-terminal part of AMBRA1, generated by CASP/CASPASE cleavage upon apoptosis induction, inhibits the antiapoptotic factor BCL2 by a direct binding through its BH3-like domain. The mitochondrial AMBRA1-BCL2 complex is thus at the crossroad between autophagy and cell death and may represent a novel target in development of therapeutic approaches in clinical diseases.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Apoptose , Mitocôndrias/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Sobrevivência Celular , Células HEK293 , Células HeLa , Humanos , Membranas Mitocondriais/metabolismo , Modelos Biológicos , Permeabilidade , Ligação Proteica , Proteínas Proto-Oncogênicas c-bcl-2/metabolismoRESUMO
Frataxin is a nuclear-encoded mitochondrial protein involved in the biogenesis of Fe-S-cluster-containing proteins and consequently in the functionality of the mitochondrial respiratory chain. Similar to other proteins that regulate mitochondrial respiration, severe frataxin deficiency leads to pathology in humans--Friedreich's ataxia, a life-threatening neurodegenerative disorder--and to developmental arrest in the nematode C. elegans. Interestingly, partial frataxin depletion extends C. elegans lifespan, and a similar anti-aging effect is prompted by reduced expression of other mitochondrial regulatory proteins from yeast to mammals. The beneficial adaptive responses to mild mitochondrial stress are still largely unknown and, if characterized, may suggest novel potential targets for the treatment of human mitochondria-associated, age-related disorders. Here we identify mitochondrial autophagy as an evolutionarily conserved response to frataxin silencing, and show for the first time that, similar to mammals, mitophagy is activated in C. elegans in response to mitochondrial stress in a pdr-1/Parkin-, pink-1/Pink-, and dct-1/Bnip3-dependent manner. The induction of mitophagy is part of a hypoxia-like, iron starvation response triggered upon frataxin depletion and causally involved in animal lifespan extension. We also identify non-overlapping hif-1 upstream (HIF-1-prolyl-hydroxylase) and downstream (globins) regulatory genes mediating lifespan extension upon frataxin and iron depletion. Our findings indicate that mitophagy induction is part of an adaptive iron starvation response induced as a protective mechanism against mitochondrial stress, thus suggesting novel potential therapeutic strategies for the treatment of mitochondrial-associated, age-related disorders.
Assuntos
Caenorhabditis elegans/fisiologia , Deficiências de Ferro , Mitofagia/efeitos dos fármacos , Anaerobiose , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Jejum , Proteínas de Ligação ao Ferro , Longevidade/efeitos dos fármacos , FrataxinaRESUMO
The activating molecule in Beclin-1-regulated autophagy (Ambra1), also known as autophagy/Beclin-1 regulator 1, is a highly intrinsically disordered and vertebrate-conserved adapter protein that is part of the autophagy signaling network. It acts in an early step of mammalian target of rapamycin complex 1 (mTORC1)-dependent autophagy by favouring formation of the autophagosome core complex. However, recent studies have revealed that Ambra1 can also coordinate a cell response upon starvation or other stresses that involve translocation of the autophagosome core complex to the endoplasmic reticulum (ER), regulative ubiquitylation and stabilization of the kinase ULK1, selective mitochondria removal and cell cycle downregulation. Moreover, Ambra1 itself appears to be targeted by a number of regulatory processes, such as cullin-dependent degradation, caspase cleavage and several modifications, ranging from phosphorylation to ubiquitylation. Altogether, this complex network of regulation highlights the importance of Ambra1 in crucial physiological events, including metabolism, cell death and cell division. In addition, Ambra1 is an important regulator of embryonic development, and its mutation or inactivation has been shown to correlate with several pathologies of the nervous system and to be involved in carcinogenesis. In this Cell Science at a Glance article and the accompanying poster, we discuss recent advances in the Ambra1 field, particularly the role of this pro-autophagic protein in cellular pathophysiology.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Transporte/metabolismo , Animais , Apoptose/fisiologia , Autofagia/fisiologia , Retículo Endoplasmático/metabolismo , Humanos , Transdução de Sinais/fisiologiaRESUMO
Dysfunctions in mitophagy, the process by which mitochondria are eliminated, are associated with cancer. We found that the proautophagic protein AMBRA1 (activating molecule in beclin 1 regulated autophagy) binds the autophagosome adapter LC3, and that this interaction is crucial for mitochondrial clearance with or without involvement of the E3-ligase PARKIN. The discovery of a novel mitophagy pathway has the potential to promote new anticancer strategies.
RESUMO
The decision between death and survival is a difficult phase of a cell life. It may depend on the intensity of a stress stimulus, on the presence of invasive pathogens, or on specific signals from neighbouring cells. Death-related molecules are being shown to possess different, and sometimes opposite roles, which they play also according to a number of environmental clues. In this review, we will analyse some of these molecules and their roles, with particular regard to mitochondria-related factors, such as BCL2 family members, the apoptosome components, the autophagy/death cross-talkers and molecules regulating mitochondrial structure and functions. Turning the double-edged swords of death molecules into plougshares may turn out to be strategically crucial in molecular oncology.
Assuntos
Sobrevivência Celular , Mitocôndrias/fisiologia , Proteínas Mitocondriais/fisiologia , HumanosRESUMO
BECLIN 1 is a central player in macroautophagy. AMBRA1, a BECLIN 1-interacting protein, positively regulates the BECLIN 1-dependent programme of autophagy. In this study, we show that AMBRA1 binds preferentially the mitochondrial pool of the antiapoptotic factor BCL-2, and that this interaction is disrupted following autophagy induction. Further, AMBRA1 can compete with both mitochondrial and endoplasmic reticulum-resident BCL-2 (mito-BCL-2 and ER-BCL-2, respectively) to bind BECLIN 1. Moreover, after autophagy induction, AMBRA1 is recruited to BECLIN 1. Altogether, these results indicate that, in normal conditions, a pool of AMBRA1 binds preferentially mito-BCL-2; after autophagy induction, AMBRA1 is released from BCL-2, consistent with its ability to promote BECLIN 1 activity. In addition, we found that the binding between AMBRA1 and mito-BCL-2 is reduced during apoptosis. Thus, a dynamic interaction exists between AMBRA1 and BCL-2 at the mitochondria that could regulate both BECLIN 1-dependent autophagy and apoptosis.
Assuntos
Autofagia , Proteínas de Transporte/biossíntese , Regulação da Expressão Gênica , Mapeamento de Interação de Proteínas , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Proteínas Reguladoras de Apoptose/metabolismo , Proteína Beclina-1 , Linhagem Celular , Retículo Endoplasmático/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Membranas Mitocondriais/metabolismoRESUMO
Alix [ALG-2 (apoptosis-linked gene 2)-interacting protein X] is a ubiquitinous adaptor protein first described for its capacity to bind to the calcium-binding protein, ALG-2. Alix regulates neuronal death in ways involving interactions with ALG-2 and with proteins of the ESCRT (endosomal sorting complex required for transport). Even though all Alix interactors characterized to date are involved in endosomal trafficking, the genuine function of the protein in this process remains unclear. We have demonstrated recently that Alix and ALG-2 form in the presence of calcium, a complex with apical caspases and with the endocytosed death receptor TNFR1 (tumour necrosis factor alpha receptor 1), thus suggesting a molecular coupling between endosomes and the cell death machinery.
Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Endossomos/metabolismo , Neurônios/citologia , Animais , Caspases/metabolismo , Morte Celular , Endossomos/enzimologia , Ativação Enzimática , Humanos , Neurônios/enzimologiaRESUMO
Alix/AIP1 regulates cell death in a way involving interactions with the calcium-binding protein ALG-2 and with proteins of ESCRT (endosomal sorting complex required for transport). Using mass spectrometry we identified caspase-8 among proteins co-immunoprecipitating with Alix in dying neurons. We next demonstrated that Alix and ALG-2 interact with pro-caspase-8 and that Alix forms a complex with the TNFalpha receptor-1 (TNF-R1), depending on its capacity to bind ESCRT proteins. Thus, Alix and ALG-2 may allow the recruitment of pro-caspase-8 onto endosomes containing TNF-R1, a step thought to be necessary for activation of the apical caspase. In line with this, expression of Alix deleted of its ALG-2-binding site (AlixDeltaALG-2) significantly reduced TNF-R1-induced cell death, without affecting endocytosis of the receptor. In a more physiological setting, we found that programmed cell death of motoneurons, which can be inhibited by AlixDeltaALG-2, is regulated by TNF-R1. Taken together, these results highlight Alix and ALG-2 as new actors of the TNF-R1 pathway.