Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomater Adv ; 148: 213353, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36848743

RESUMO

A spinal cord injury (SCI) can be caused by unforeseen events such as a fall, a vehicle accident, a gunshot, or a malignant illness, which has a significant impact on the quality of life of the patient. Due to the limited regenerative potential of the central nervous system (CNS), SCI is one of the most daunting medical challenges of modern medicine. Great advances have been made in tissue engineering and regenerative medicine, which include the transition from two-dimensional (2D) to three-dimensional (3D) biomaterials. Combinatory treatments that use 3D scaffolds may significantly enhance the repair and regeneration of functional neural tissue. In an effort to mimic the chemical and physical properties of neural tissue, scientists are researching the development of the ideal scaffold made of synthetic and/or natural polymers. Moreover, in order to restore the architecture and function of neural networks, 3D scaffolds with anisotropic properties that replicate the native longitudinal orientation of spinal cord nerve fibres are being designed. In an effort to determine if scaffold anisotropy is a crucial property for neural tissue regeneration, this review focuses on the most current technological developments relevant to anisotropic scaffolds for SCI. Special consideration is given to the architectural characteristics of scaffolds containing axially oriented fibres, channels, and pores. By analysing neural cell behaviour in vitro and tissue integration and functional recovery in animal models of SCI, the therapeutic efficacy is evaluated for its successes and limitations.


Assuntos
Traumatismos da Medula Espinal , Alicerces Teciduais , Animais , Alicerces Teciduais/química , Anisotropia , Qualidade de Vida , Engenharia Tecidual/métodos , Traumatismos da Medula Espinal/cirurgia
2.
Materials (Basel) ; 15(21)2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36363059

RESUMO

The fabrication of laser-induced periodic surface structures (LIPSS) over extended areas at high processing speeds requires the use of high repetition rate femtosecond lasers. It is known that industrially relevant materials such as steel experience heat accumulation when irradiated at repetition rates above some hundreds of kHz, and significant debris redeposition can take place. However, there are few studies on how the laser repetition rate influences both the debris deposition and the final LIPSS morphology. In this work, we present a study of fs laser-induced fabrication of low spatial frequency LIPSS (LSFL), with pulse repetition rates ranging from 10 kHz to 2 MHz on commercially available steel. The morphology of the laser-structured areas as well as the redeposited debris was characterized by scanning electron microscopy (SEM) and µ-Raman spectroscopy. To identify repetition rate ranges where heat accumulation is present during the irradiations, we developed a simple heat accumulation model that solves the heat equation in 1 dimension implementing a Forward differencing in Time and Central differencing in Space (FTCS) scheme. Contact angle measurements with water demonstrated the influence of heat accumulation and debris on the functional wetting behavior. The findings are directly relevant for the processing of metals using high repetition rate femtosecond lasers, enabling the identification of optimum conditions in terms of desired morphology, functionality, and throughput.

3.
Nanomaterials (Basel) ; 12(4)2022 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-35214951

RESUMO

Femtosecond laser induced changes on the topography of stainless steel with double pulses is investigated to reveal the role of parameters such as the fluence, the energy dose and the interpulse delay on the features of the produced patterns. Our results indicate that short pulse separation (Δτ = 5 ps) favors the formation of 2D Low Spatially Frequency Laser Induced Periodic Surface Structures (LSFL) while longer interpulse delays (Δτ = 20 ps) lead to 2D High Spatially Frequency LIPSS (HSFL). The detailed investigation is complemented with an analysis of the produced surface patterns and characterization of their wetting and cell-adhesion properties. A correlation between the surface roughness and the contact angle is presented which confirms that topographies of variable roughness and complexity exhibit different wetting properties. Furthermore, our analysis indicates that patterns with different spatial characteristics demonstrate variable cell adhesion response which suggests that the methodology can be used as a strategy towards the fabrication of tailored surfaces for the development of functional implants.

4.
RSC Adv ; 10(62): 37956-37961, 2020 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-35515197

RESUMO

Results on the manipulation of the wetting properties of stainless steel alloy surface by ultrashort pulse laser texturing are presented. The wide range of water droplet contact angles from highly-hydrophilic to super-hydrophobic was achieved by generation of laser-induced periodic surface structures (LIPSS) and nanospikes. In particular, the wetting state was controlled by accumulated laser fluence, which determines the carbon/oxygen content and nano-texture type of the surface after laser treatment. A super-hydrophobic water-repelling surface was generated. The simple, single-step laser processing technology was demonstrated as a promising tool for the large-scale industrial production of self-cleaning stainless steel.

5.
Materials (Basel) ; 12(20)2019 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-31635175

RESUMO

We report on a novel single-step method to develop steel surfaces with permanent highly hydrophilic and anti-corrosive properties, without employing any chemical coating. It is based on the femtosecond (fs) laser processing in a saturated background gas atmosphere. It is particularly shown that the fs laser microstructuring of steel in the presence of ammonia gas gives rise to pseudoperiodic arrays of microcones exhibiting highly hydrophilic properties, which are stable over time. This is in contrast to the conventional fs laser processing of steel in air, which always provides surfaces with progressively increasing hydrophobicity following irradiation. More importantly, the surfaces subjected to fs laser treatment in ammonia exhibit remarkable anti-corrosion properties, contrary to those processed in air, as well as untreated ones. The combination of two functionalities, namely hydrophilicity and corrosion resistance, together with the facile processing performed directly onto the steel surface, without the need to deposit any coating, opens the way for the laser-based production of high-performance steel components for a variety of applications, including mechanical parts, fluidic components and consumer products.

6.
Int J Mol Sci ; 19(12)2018 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-30544860

RESUMO

The concept of regenerating tissues, with properties and functions that mimic natural tissues, has attracted significant attention in recent years. [...].


Assuntos
Materiais Biocompatíveis/química , Engenharia Tecidual/métodos , Osso e Ossos/fisiologia , Humanos , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Células-Tronco Mesenquimais/citologia , Nanopartículas/química
7.
Beilstein J Nanotechnol ; 9: 2802-2812, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30498653

RESUMO

The replication of complex structures found in nature represents an enormous challenge even for advanced fabrication techniques, such as laser processing. For certain applications, not only the surface topography needs to be mimicked, but often also a specific function of the structure. An alternative approach to laser direct writing of complex structures is the generation of laser-induced periodic surface structures (LIPSS), which is based on directed self-organization of the material and allows fabrication of specific micro- and nanostructures over extended areas. In this work, we exploit this approach to fabricate complex biomimetic structures on the surface of steel 1.7131 formed upon irradiation with high repetition rate femtosecond laser pulses. In particular, the fabricated structures show similarities to the skin of certain reptiles and integument of insects. Different irradiation parameters are investigated to produce the desired structures, including laser repetition rate and laser fluence, paying special attention to the influence of the number of times the same area is rescanned with the laser. The latter parameter is identified to be crucial for controlling the morphology and size of specific structures. As an example for the functionality of the structures, we have chosen the surface wettability and studied its dependence on the laser processing parameters. Contact angle measurements of water drops placed on the surface reveal that a wide range of angles can be accessed by selecting the appropriate irradiation parameters, highlighting also here the prominent role of the number of scans.

8.
ACS Appl Mater Interfaces ; 10(42): 36564-36571, 2018 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-30246525

RESUMO

The wettability of a material surface is an essential property that can define the range of applications it can be used for. In the particular case of steel, industrial applications are countless but sometimes limited because of the lack of control over its surface properties. Although different strategies have been proposed to tune the wetting behavior of metal surfaces, most of them require the use of processes such as coatings with different materials or plasma/chemical etching. In this work, we present two different laser-based direct-write strategies that allow tuning the wetting properties of 1.7131 steel over a wide range of contact angles using a high repetition rate femtosecond laser. The strategy consists in the writing of parallel and crossed lines with variable spacing. A detailed morphological analysis confirmed the formation of microstructures superimposed with nanofeatures, forming a hierarchical surface topography that influences the wetting properties of the material surface. Contact angle measurements with water confirm that this behavior is mostly dependent on the line-to-line spacing and the polarization-dependent orientation of the structures. Moreover, we demonstrate that the structures can be easily replicated in a polymer using a laser-fabricated steel master, which enables low-cost mass production. These findings provide a practical route for developing user-defined wetting control for new applications of steel and other materials functionalized by rapid laser structuring.

9.
Biomater Sci ; 6(6): 1469-1479, 2018 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-29623309

RESUMO

In this work, we report on a novel approach to develop hierarchically-structured cell culture platforms incorporating functionalized gold nanoparticles (AuNPs). In particular, the hierarchical substrates comprise primary pseudo-periodic arrays of silicon microcones combined with a secondary nanoscale pattern of homogeneously deposited AuNPs terminated with bio-functional moieties. AuNPs with various functionalities (i.e. oligopeptides, small molecules and oligomers) were successfully attached onto the microstructures. Experiments with PC12 cells on hierarchical substrates incorporating AuNPs carrying the RGD peptide showed an impressive growth and NGF-induced differentiation of the PC12 cells, compared to that on the NP-free, bare, micropatterned substrates. The exploitation of the developed methodology for the binding of AuNPs as carriers of specific bio-functional moieties onto micropatterned culture substrates for cell biology studies is envisaged.


Assuntos
Materiais Biocompatíveis/química , Ouro/química , Nanopartículas Metálicas/química , Nanoestruturas/química , Silício/química , Animais , Diferenciação Celular , Proliferação de Células , Nanopartículas Metálicas/ultraestrutura , Nanoestruturas/ultraestrutura , Oligopeptídeos/química , Células PC12 , Ratos , Propriedades de Superfície
10.
Opt Lett ; 40(22): 5172-5, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26565827

RESUMO

We report on the morphological effects induced by the inhomogeneous absorption of radially polarized femtosecond laser irradiation of nickel (Ni) in sub-ablation conditions. A theoretical prediction of the morphology profile is performed, and the role of surface plasmon excitation in the production of self-formed periodic ripple structures is evaluated. Results indicate a smaller periodicity of the ripples profile compared to that attained under linearly polarized irradiation conditions. A combined hydrodynamical and thermoelastic model is presented in laser beam conditions that lead to material melting. The simulation results are presented to be in good agreement with the experimental findings. The ability to control the size of the morphological changes via modulating the beam polarization may provide an additional route for controlling and optimizing the outcome of laser micro-processing.

11.
ACS Appl Mater Interfaces ; 7(32): 17756-64, 2015 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-26222681

RESUMO

Enhancement of the stability of bulk heterojunction (BHJ) organic photovoltaic (OPV) devices is reported by the addition of surfactant-free aluminum (Al) nanoparticles (NPs) into the photoactive layer. The universality of the effect is demonstrated for two different BHJ systems, namely, the well-studied poly(3-hexylthiophene-2,5-diyl):phenyl-C61-butyric acid methyl ester (P3HT:PCBM) as well as the high efficient poly[N-9'-heptadecanyl-2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)]:[6,6]-phenyl-C71-butyric acid methyl ester (PCDTBT:PC71BM). It is shown that the lifetime of the devices with Al NPs, operating under continuous one-sun illumination in ambient conditions, is more than three times longer compared to the reference devices. Using complementary analytical techniques for in situ studies, we have explored the underlying mechanisms behind the observed stability improvement in the case of the P3HT:PCBM system. In particular, laser-induced fluorescence (LIF), photoluminescence decay and Fourier transform infrared (FTIR) spectroscopy experiments were performed and complemented with device degradation electrical measurements. It is found that the embedded Al NPs act as performance stabilizers, giving rise to enhanced structural stability of the active blend. Furthermore, it is revealed that the observed improvement can also be ascribed to NP-mediated mitigation of the photo-oxidation effect. This study addresses a major issue in OPV devices, that is, photoinduced stability, indicating that the exploitation of Al NPs could be a successful approach toward fabricating OPVs exhibiting long-term operating lifetimes.

12.
Vaccine ; 33(27): 3142-9, 2015 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-25979803

RESUMO

To overcome the limiting antigenic repertoire of protein sub-units and the side effects of adjuvants applied in second generation vaccines, the present work combined in vitro and in vivo manipulations to develop biomaterials allowing natural antigen-loading and presentation in vitro and further activation of the immune response in vivo. 3-dimensional laser micro-textured implantable Si-scaffolds supported mouse macrophage adherence, allowed natural seeding with human serum albumin (antigen) and specific antibody and inflammatory cytokine production in vitro. Implantation of Si-scaffolds loaded with antigen-activated macrophages induced an inflammatory reaction along with antigen-specific antibody production in vivo, which could be detected even 30 days post implantation. Analysis of implant histology using scanning electron microscopy showed that Si-scaffolds could be stable for a 6-month period. Such technology leads to personalized implantable vaccines, opening novel areas of research and treatment.


Assuntos
Transplante de Células , Macrófagos/imunologia , Macrófagos/fisiologia , Alicerces Teciduais , Vacinação/métodos , Vacinas/administração & dosagem , Animais , Antígenos/imunologia , Antígenos/metabolismo , Adesão Celular , Ativação de Macrófagos , Masculino , Camundongos Endogâmicos BALB C , Resultado do Tratamento
13.
Biofabrication ; 3(4): 045004, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21904024

RESUMO

The aim of this study is to investigate cell adhesion and viability on highly rough polymeric surfaces with gradient roughness ratios and wettabilities prepared by microreplication of laser micro/nano-textured Si surfaces. Negative replicas on polydimethylsiloxane as well as positive ones on a photocurable (organically modified ceramic) and a biodegradable (poly(lactide-co-glycolide)) polymer have been successfully reproduced. The final culture substrates comprised from forests of micron-sized conical spikes exhibiting a range of roughness ratios and wettabilities, was achieved by changing the laser fluence used to fabricate the original template surfaces. Cell culture experiments were performed with the fibroblast NIH/3T3 and PC12 neuronal cell lines in order to investigate how these surfaces are capable of modulating different types of cellular responses including, viability, adhesion and morphology. The results showed a preferential adhesion of both cell types on the microstructured surfaces compared to the unstructured ones. In particular, the fibroblast NIH/3T3 cells show optimal adhesion for small roughness ratios, independent of the surface wettability and polymer type, indicating a non-monotonic dependence of cell adhesion on surface energy. In contrast, the PC12 cells were observed to adhere well to the patterned surfaces independent of the roughness ratio and wettability. These experimental findings are correlated with micromechanical measurements performed on the unstructured and replicated surfaces and discussed on the basis of previous observations describing the relation of cell response to surface energy and rigidity.


Assuntos
Fibroblastos/citologia , Ácido Láctico/química , Lasers , Nanoestruturas/química , Nanotecnologia/métodos , Ácido Poliglicólico/química , Células 3T3 , Actinas/metabolismo , Animais , Adesão Celular/efeitos dos fármacos , Sobrevivência Celular , Dimetilpolisiloxanos/química , Módulo de Elasticidade , Fibroblastos/metabolismo , Camundongos , Microscopia de Fluorescência , Nanoestruturas/ultraestrutura , Células PC12 , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ratos , Vinculina/metabolismo , Molhabilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA