Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Mol Bioeng ; 16(4): 261-281, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37811008

RESUMO

Introduction: In the colorectal cancer (CRC) tumor microenvironment, cancerous and precancerous cells continuously experience mechanical forces associated with peristalsis. Given that mechanical forces like shear stress and strain can positively impact cancer progression, we explored the hypothesis that peristalsis may also contribute to malignant progression in CRC. We defined malignant progression as enrichment of cancer stem cells and the acquisition of invasive behaviors, both vital to CRC progression. Methods: We leveraged our peristalsis bioreactor to expose CRC cell lines (HCT116), patient-derived xenograft (PDX1,2) lines, or non-cancerous intestinal cells (HIEC-6) to forces associated with peristalsis in vitro. Cells were maintained in static control conditions or exposed to peristalsis for 24 h prior to assessment of cancer stem cell (CSC) emergence or the acquisition of invasive phenotypes. Results: Exposure of HCT116 cells to peristalsis significantly increased the emergence of LGR5+ CSCs by 1.8-fold compared to static controls. Peristalsis enriched LGR5 positivity in several CRC cell lines, notably significant in KRAS mutant lines. In contrast, peristalsis failed to increase LGR5+ in non-cancerous intestinal cells, HIEC-6. LGR5+ emergence downstream of peristalsis was dependent on ROCK and Wnt activity, and not YAP1 activation. Additionally, HCT116 cells adopted invasive morphologies when exposed to peristalsis, with increased filopodia density and epithelial to mesenchymal gene expression, in a Wnt dependent manner. Conclusions: Peristalsis associated forces drive malignant progression of CRC via ROCK, YAP1, and Wnt-related mechanotransduction. Supplementary Information: The online version contains supplementary material available at 10.1007/s12195-023-00776-w.

2.
Elife ; 102021 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-33629656

RESUMO

The endothelium responds to numerous chemical and mechanical factors in regulating vascular tone, blood pressure, and blood flow. The endothelial volume-regulated anion channel (VRAC) has been proposed to be mechanosensitive and thereby sense fluid flow and hydrostatic pressure to regulate vascular function. Here, we show that the leucine-rich repeat-containing protein 8a, LRRC8A (SWELL1), is required for VRAC in human umbilical vein endothelial cells (HUVECs). Endothelial LRRC8A regulates AKT-endothelial nitric oxide synthase (eNOS) signaling under basal, stretch, and shear-flow stimulation, forms a GRB2-Cav1-eNOS signaling complex, and is required for endothelial cell alignment to laminar shear flow. Endothelium-restricted Lrrc8a KO mice develop hypertension in response to chronic angiotensin-II infusion and exhibit impaired retinal blood flow with both diffuse and focal blood vessel narrowing in the setting of type 2 diabetes (T2D). These data demonstrate that LRRC8A regulates AKT-eNOS in endothelium and is required for maintaining vascular function, particularly in the setting of T2D.


Assuntos
Endotélio/fisiologia , Proteínas de Membrana/genética , Óxido Nítrico Sintase Tipo III/genética , Proteínas Proto-Oncogênicas c-akt/genética , Animais , Feminino , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Óxido Nítrico Sintase Tipo III/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
3.
Nat Commun ; 11(1): 1204, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-32139674

RESUMO

Anti-angiogenic therapies have generated significant interest for their potential to combat tumor growth. However, tumor overproduction of pro-angiogenic ligands can overcome these therapies, hampering success of this approach. To circumvent this problem, we target the resynthesis of phosphoinositides consumed during intracellular transduction of pro-angiogenic signals in endothelial cells (EC), thus harnessing the tumor's own production of excess stimulatory ligands to deplete adjacent ECs of the capacity to respond to these signals. Using zebrafish and human endothelial cells in vitro, we show ECs deficient in CDP-diacylglycerol synthase 2 are uniquely sensitive to increased vascular endothelial growth factor (VEGF) stimulation due to a reduced capacity to re-synthesize phosphoinositides, including phosphatidylinositol-(4,5)-bisphosphate (PIP2), resulting in VEGF-exacerbated defects in angiogenesis and angiogenic signaling. Using murine tumor allograft models, we show that systemic or EC specific suppression of phosphoinositide recycling results in reduced tumor growth and tumor angiogenesis. Our results suggest inhibition of phosphoinositide recycling provides a useful anti-angiogenic approach.


Assuntos
Inibidores da Angiogênese/farmacologia , Endotélio Vascular/metabolismo , Fosfatidilinositóis/metabolismo , Fatores de Crescimento do Endotélio Vascular/metabolismo , Aloenxertos/efeitos dos fármacos , Animais , Bovinos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Diacilglicerol Colinofosfotransferase/deficiência , Diacilglicerol Colinofosfotransferase/metabolismo , Endotélio Vascular/efeitos dos fármacos , Deleção de Genes , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Camundongos Knockout , Modelos Biológicos , Neovascularização Fisiológica/efeitos dos fármacos , Especificidade de Órgãos , Transdução de Sinais , Peixe-Zebra
4.
Arterioscler Thromb Vasc Biol ; 38(2): 353-362, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29284606

RESUMO

OBJECTIVE: The assembly of a functional vascular system requires a coordinated and dynamic transition from activation to maturation. High vascular endothelial growth factor activity promotes activation, including junction destabilization and cell motility. Maturation involves junctional stabilization and formation of a functional endothelial barrier. The identity and mechanism of action of prostabilization signals are still mostly unknown. Bone morphogenetic protein receptors and their ligands have important functions during embryonic vessel assembly and maturation. Previous work has suggested a role for growth differentiation factor 6 (GDF6; bone morphogenetic protein 13) in vascular integrity although GDF6's mechanism of action was not clear. Therefore, we sought to further explore the requirement for GDF6 in vascular stabilization. APPROACH AND RESULTS: We investigated the role of GDF6 in promoting endothelial vascular integrity in vivo in zebrafish and in cultured human umbilical vein endothelial cells in vitro. We report that GDF6 promotes vascular integrity by counteracting vascular endothelial growth factor activity. GDF6-deficient endothelium has increased vascular endothelial growth factor signaling, increased vascular endothelial-cadherin Y658 phosphorylation, vascular endothelial-cadherin delocalization from cell-cell interfaces, and weakened endothelial cell adherence junctions that become prone to vascular leak. CONCLUSIONS: Our results suggest that GDF6 promotes vascular stabilization by restraining vascular endothelial growth factor signaling. Understanding how GDF6 affects vascular integrity may help to provide insights into hemorrhage and associated vascular pathologies in humans.


Assuntos
Permeabilidade Capilar , Embrião não Mamífero/irrigação sanguínea , Células Endoteliais/metabolismo , Fator 6 de Diferenciação de Crescimento/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Antígenos CD/genética , Antígenos CD/metabolismo , Caderinas/genética , Caderinas/metabolismo , Células Cultivadas , Regulação da Expressão Gênica no Desenvolvimento , Fator 6 de Diferenciação de Crescimento/genética , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Neovascularização Fisiológica , Fosforilação , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
5.
Development ; 144(1): 115-127, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27913637

RESUMO

Mural cells (vascular smooth muscle cells and pericytes) play an essential role in the development of the vasculature, promoting vascular quiescence and long-term vessel stabilization through their interactions with endothelial cells. However, the mechanistic details of how mural cells stabilize vessels are not fully understood. We have examined the emergence and functional role of mural cells investing the dorsal aorta during early development using the zebrafish. Consistent with previous literature, our data suggest that cells ensheathing the dorsal aorta emerge from a sub-population of cells in the adjacent sclerotome. Inhibition of mural cell recruitment to the dorsal aorta through disruption of pdgfr signaling leads to a reduced vascular basement membrane, which in turn results in enhanced dorsal aorta vessel elasticity and failure to restrict aortic diameter. Our results provide direct in vivo evidence for a functional role for mural cells in patterning and stabilization of the early vasculature through production and maintenance of the vascular basement membrane to prevent abnormal aortic expansion and elasticity.


Assuntos
Aorta/embriologia , Comunicação Celular/fisiologia , Células Endoteliais/fisiologia , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/fisiologia , Pericitos/fisiologia , Peixe-Zebra/embriologia , Animais , Animais Geneticamente Modificados , Membrana Basal/citologia , Embrião não Mamífero , Neovascularização Fisiológica/genética , Pericitos/citologia , Receptores do Fator de Crescimento Derivado de Plaquetas/genética , Receptores do Fator de Crescimento Derivado de Plaquetas/fisiologia , Transdução de Sinais/genética , Peixe-Zebra/genética
6.
Wiley Interdiscip Rev Dev Biol ; 5(6): 689-710, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27576003

RESUMO

The lymphatic vasculature is comprised of a network of endothelial vessels found in close proximity to but separated from the blood vasculature. An essential tissue component of all vertebrates, lymphatics are responsible for the maintenance of fluid homeostasis, dissemination of immune cells, and lipid reabsorption under healthy conditions. When lymphatic vessels are impaired due to invasive surgery, genetic disorders, or parasitic infections, severe fluid build-up accumulates in the affected tissues causing a condition known as lymphedema. Malignant tumors can also directly activate lymphangiogenesis and use these vessels to promote the spread of metastatic cells. Although their first description goes back to the times of Hippocrates, with subsequent anatomical characterization at the beginning of the 20th-century, the lack of identifying molecular markers and tools to visualize these translucent vessels meant that investigation of lymphatic vessels fell well behind research of blood vessels. However, after years under the shadow of the blood vasculature, recent advances in imaging technologies and new genetic and molecular tools have accelerated the pace of research on lymphatic vessel development. These new tools have facilitated both work in classical mammalian models and the emergence of new powerful vertebrate models like zebrafish, quickly driving the field of lymphatic development back into the spotlight. In this review, we summarize the highlights of recent research on the development and function of the lymphatic vascular network in health and disease. WIREs Dev Biol 2016, 5:689-710. doi: 10.1002/wdev.246 For further resources related to this article, please visit the WIREs website.


Assuntos
Linfangiogênese/fisiologia , Doenças Linfáticas/patologia , Vasos Linfáticos/embriologia , Vasos Linfáticos/patologia , Animais , Drenagem , Humanos
7.
Dev Biol ; 411(2): 183-194, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26872874

RESUMO

Angiogenesis, the formation of new blood vessels by remodeling and growth of pre-existing vessels, is a highly orchestrated process that requires a tight balance between pro-angiogenic and anti-angiogenic factors and the integration of their corresponding signaling networks. The family of Rho GTPases, including RhoA, Rac1, and Cdc42, play a central role in many cell biological processes that involve cytoskeletal changes and cell movement. Specifically for Rac1, we have shown that excision of Rac1 using a Tie2-Cre animal line results in embryonic lethality in midgestation (embryonic day (E) 9.5), with multiple vascular defects. However, Tie2-Cre can be also expressed during vasculogenesis, prior to angiogenesis, and is active in some hematopoietic precursors that can affect vessel formation. To circumvent these limitations, we have now conditionally deleted Rac1 in a temporally controlled and endothelial-restricted fashion using Cdh5(PAC)-iCreERT2 transgenic mice. In this highly controlled experimental in vivo system, we now show that Rac1 is required for embryonic vascular integrity and angiogenesis, and for the formation of superficial and deep vascular networks in the post-natal developing retina, the latter involving a novel specific function for Rac1 in vertical blood vessel sprouting. Aligned with these findings, we show that RAC1 is spatially involved in endothelial cell migration, invasion, and radial sprouting activities in 3D collagen matrix in vitro models. Hence, Rac1 and its downstream molecules may represent potential anti-angiogeneic therapeutic targets for the treatment of many human diseases that involve aberrant neovascularization and blood vessel overgrowth.


Assuntos
Células Endoteliais/citologia , Regulação da Expressão Gênica no Desenvolvimento , Neovascularização Fisiológica , Neuropeptídeos/fisiologia , Retina/embriologia , Vasos Retinianos/fisiologia , Proteínas rac1 de Ligação ao GTP/fisiologia , Alelos , Animais , Movimento Celular , Endotélio Vascular/metabolismo , Feminino , Genes Reporter , Genótipo , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neuropeptídeos/genética , RNA Interferente Pequeno/metabolismo , Vasos Retinianos/embriologia , Proteínas rac1 de Ligação ao GTP/genética
8.
Methods Mol Biol ; 1066: 17-28, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23955730

RESUMO

An important advance using in vitro EC tube morphogenesis and maturation models has been the development of systems using serum-free defined media. Using this approach, the growth factors and cytokines which are actually necessary for these events can be determined. The first model developed by our laboratory was such a system where we showed that phorbol ester was needed in order to promote survival and tube morphogenesis in 3D collagen matrices. Recently, we have developed a new system in which the hematopoietic stem cell cytokines, stem cell factor (SCF), interleukin-3 (IL-3), and stromal derived factor-1α (SDF-1α) were added in conjunction with FGF-2 to promote human EC tube morphogenesis in 3D collagen matrices under serum-free defined conditions. This new model using SCF, IL-3, SDF-1α, and FGF-2 also works well following the addition of pericytes where EC tube formation occurs, pericytes are recruited to the tubes, and vascular basement membrane matrix assembly occurs following EC-pericyte interactions. In this chapter, we describe several in vitro assay models that we routinely utilize to investigate the molecular requirements that are critical to EC tube formation and maturation events in 3D extracellular matrix environments.


Assuntos
Células Endoteliais/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Neovascularização Fisiológica , Pericitos/metabolismo , Células Cultivadas , Quimiocina CXCL12/metabolismo , Matriz Extracelular/metabolismo , Fator 2 de Crescimento de Fibroblastos/metabolismo , Humanos , Interleucina-3/metabolismo , Morfogênese/fisiologia , Fator de Células-Tronco/metabolismo
9.
PLoS One ; 8(12): e85147, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24391990

RESUMO

We describe a novel 3D fibrin matrix model using recombinant hematopoietic stem cell cytokines under serum-free defined conditions which promotes the assembly of human endothelial cell (EC) tubes with co-associated pericytes. Individual ECs and pericytes are randomly mixed together and EC tubes form that is accompanied by pericyte recruitment to the EC tube abluminal surface over a 3-5 day period. These morphogenic processes are stimulated by a combination of the hematopoietic stem cell cytokines, stem cell factor, interleukin-3, stromal derived factor-1α, and Flt-3 ligand which are added in conjunction with fibroblast growth factor (FGF)-2 into the fibrin matrix. In contrast, this tube morphogenic response does not occur under serum-free defined conditions when VEGF and FGF-2 are added together in the fibrin matrices. We recently demonstrated that VEGF and FGF-2 are able to prime EC tube morphogenic responses (i.e. added overnight prior to the morphogenic assay) to hematopoietic stem cell cytokines in collagen matrices and, interestingly, they also prime EC tube morphogenesis in 3D fibrin matrices. EC-pericyte interactions in 3D fibrin matrices leads to marked vascular basement membrane assembly as demonstrated using immunofluorescence and transmission electron microscopy. Furthermore, we show that hematopoietic stem cell cytokines and pericytes stimulate EC sprouting in fibrin matrices in a manner dependent on the α5ß1 integrin. This novel co-culture system, under serum-free defined conditions, allows for a molecular analysis of EC tube assembly, pericyte recruitment and maturation events in a critical ECM environment (i.e. fibrin matrices) that regulates angiogenic events in postnatal life.


Assuntos
Citocinas/metabolismo , Células Endoteliais/metabolismo , Fator 2 de Crescimento de Fibroblastos/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Pericitos/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Células Cultivadas , Meios de Cultura Livres de Soro , Fibrina/metabolismo , Imunofluorescência , Células-Tronco Hematopoéticas/imunologia , Humanos , Integrina alfa5beta1/metabolismo , Microscopia Eletrônica de Transmissão
10.
Dev Cell ; 23(2): 342-55, 2012 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-22898778

RESUMO

Cardiovascular growth must balance stabilizing signals required to maintain endothelial connections and network integrity with destabilizing signals that enable individual endothelial cells to migrate and proliferate. The cerebral cavernous malformation (CCM) signaling pathway utilizes the adaptor protein CCM2 to strengthen endothelial cell junctions and stabilize vessels. Here we identify a CCM2 paralog, CCM2L, that is expressed selectively in endothelial cells during periods of active cardiovascular growth. CCM2L competitively blocks CCM2-mediated stabilizing signals biochemically, in cultured endothelial cells, and in developing mice. Loss of CCM2L reduces endocardial growth factor expression and impairs tumor growth and wound healing. Our studies identify CCM2L as a molecular mechanism by which endothelial cells coordinately regulate vessel stability and growth during cardiovascular development, as well as postnatal vessel growth.


Assuntos
Malformações Vasculares do Sistema Nervoso Central/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Neovascularização Patológica , Sequência de Aminoácidos , Animais , Malformações Vasculares do Sistema Nervoso Central/embriologia , Malformações Vasculares do Sistema Nervoso Central/genética , Embrião de Mamíferos/irrigação sanguínea , Embrião de Mamíferos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Junções Intercelulares/metabolismo , Proteína KRIT1 , Camundongos , Camundongos Knockout , Proteínas dos Microfilamentos/química , Proteínas dos Microfilamentos/deficiência , Proteínas dos Microfilamentos/genética , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/deficiência , Dados de Sequência Molecular , Ligação Proteica , Proteínas Proto-Oncogênicas/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Transdução de Sinais
11.
Blood ; 120(2): 489-98, 2012 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-22649102

RESUMO

Understanding the mechanisms that regulate angiogenesis and translating these into effective therapies are of enormous scientific and clinical interests. In this report, we demonstrate the central role of CDP-diacylglycerol synthetase (CDS) in the regulation of VEGFA signaling and angiogenesis. CDS activity maintains phosphoinositide 4,5 bisphosphate (PIP2) availability through resynthesis of phosphoinositides, whereas VEGFA, mainly through phospholipase Cγ1, consumes PIP2 for signal transduction. Loss of CDS2, 1 of 2 vertebrate CDS enzymes, results in vascular-specific defects in zebrafish in vivo and failure of VEGFA-induced angiogenesis in endothelial cells in vitro. Absence of CDS2 also results in reduced arterial differentiation and reduced angiogenic signaling. CDS2 deficit-caused phenotypes can be successfully rescued by artificial elevation of PIP2 levels, and excess PIP2 or increased CDS2 activity can promote excess angiogenesis. These results suggest that availability of CDS-controlled resynthesis of phosphoinositides is essential for angiogenesis.


Assuntos
Diacilglicerol Colinofosfotransferase/metabolismo , Fosfatidilinositóis/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Sequência de Bases , Vasos Sanguíneos/embriologia , Vasos Sanguíneos/metabolismo , DNA Complementar/genética , Diacilglicerol Colinofosfotransferase/genética , Humanos , Mutação , Neovascularização Fisiológica/genética , RNA Interferente Pequeno/genética , Transdução de Sinais , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
12.
Microsc Microanal ; 18(1): 68-80, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22166617

RESUMO

Extracellular matrix synthesis and deposition surrounding the developing vasculature are critical for vessel remodeling and maturation events. Although the basement membrane is an integral structure underlying endothelial cells (ECs), few studies, until recently, have been performed to understand its formation in this context. In this review article, we highlight new data demonstrating a corequirement for ECs and pericytes to properly deposit and assemble vascular basement membranes during morphogenic events. In EC only cultures or under conditions whereby pericyte recruitment is blocked, there is a lack of basement membrane assembly, decreased vessel stability (with increased susceptibility to pro-regressive stimuli), and increased EC tube widths (a marker of dysfunctional EC-pericyte interactions). ECs and pericytes both contribute basement membrane components and, furthermore, both cells induce the expression of particular components as well as integrins that recognize them. The EC-derived factors--platelet derived growth factor-BB and heparin binding-epidermal growth factor--are both critical for pericyte recruitment to EC tubes and concomitant vascular basement membrane formation in vitro and in vivo. Thus, heterotypic EC-pericyte interactions play a fundamental role in vascular basement membrane matrix deposition, a critical tube maturation event that is altered in key disease states such as diabetes and cancer.


Assuntos
Membrana Basal/metabolismo , Células Endoteliais/fisiologia , Matriz Extracelular/metabolismo , Pericitos/fisiologia , Animais , Humanos , Camundongos
13.
Blood ; 118(4): 1145-53, 2011 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-21628409

RESUMO

ERG is a member of the ETS transcription factor family that is highly enriched in endothelial cells (ECs). To further define the role of ERG in regulating EC function, we evaluated the effect of ERG knock-down on EC lumen formation in 3D collagen matrices. Blockade of ERG using siRNA completely interferes with EC lumen formation. Quantitative PCR (QPCR) was used to identify potential downstream gene targets of ERG. In particular, we identified RhoJ as the Rho GTPase family member that is closely related to Cdc42 as a target of ERG. Knockdown of ERG expression in ECs led to a 75% reduction in the expression of RhoJ. Chromatin immunoprecipitation and transactivation studies demonstrated that ERG could bind to functional sites in the proximal promoter of the RhoJ gene. Knock-down of RhoJ similarly resulted in a marked reduction in the ability of ECs to form lumens. Suppression of either ERG or RhoJ during EC lumen formation was associated with a marked increase in RhoA activation and a decrease in Rac1 and Cdc42 activation and their downstream effectors. Finally, in contrast to other Rho GTPases, RhoJ exhibits a highly EC-restricted expression pattern in several different tissues, including the brain, heart, lung, and liver.


Assuntos
Vasos Sanguíneos/crescimento & desenvolvimento , Células Endoteliais/metabolismo , Transativadores/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Animais , Western Blotting , Técnicas de Silenciamento de Genes , Humanos , Imunoprecipitação , Lasers , Camundongos , Camundongos Nus , Microdissecção , Morfogênese , RNA Interferente Pequeno , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/fisiologia , Regulador Transcricional ERG
14.
J Clin Invest ; 121(5): 1871-81, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21490399

RESUMO

Cerebral cavernous malformations (CCMs) are a common type of vascular malformation in the brain that are a major cause of hemorrhagic stroke. This condition has been independently linked to 3 separate genes: Krev1 interaction trapped (KRIT1), Cerebral cavernous malformation 2 (CCM2), and Programmed cell death 10 (PDCD10). Despite the commonality in disease pathology caused by mutations in these 3 genes, we found that the loss of Pdcd10 results in significantly different developmental, cell biological, and signaling phenotypes from those seen in the absence of Ccm2 and Krit1. PDCD10 bound to germinal center kinase III (GCKIII) family members, a subset of serine-threonine kinases, and facilitated lumen formation by endothelial cells both in vivo and in vitro. These findings suggest that CCM may be a common tissue manifestation of distinct mechanistic pathways. Nevertheless, loss of heterozygosity (LOH) for either Pdcd10 or Ccm2 resulted in CCMs in mice. The murine phenotype induced by loss of either protein reproduced all of the key clinical features observed in human patients with CCM, as determined by direct comparison with genotype-specific human surgical specimens. These results suggest that CCM may be more effectively treated by directing therapies based on the underlying genetic mutation rather than treating the condition as a single clinical entity.


Assuntos
Hemangioma Cavernoso do Sistema Nervoso Central/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Modelos Genéticos , Mutação , Animais , Proteínas Reguladoras de Apoptose , Encéfalo/embriologia , Encéfalo/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Genótipo , Humanos , Proteína KRIT1 , Perda de Heterozigosidade , Camundongos , Camundongos Transgênicos , Proteínas dos Microfilamentos/genética , Proteínas Associadas aos Microtúbulos/genética , Fenótipo , Proteínas Proto-Oncogênicas/genética , Fatores de Tempo
15.
Blood ; 117(14): 3709-19, 2011 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-21239704

RESUMO

Here, we demonstrate a novel, direct-acting, and synergistic role for 3 hematopoietic stem cell cytokines: stem cell factor, interleukin-3, and stromal derived factor-1α, in controlling human endothelial cell (EC) tube morphogenesis, sprouting, and pericyte-induced tube maturation under defined serum-free conditions in 3-dimensional matrices. Angiogenic cytokines such as vascular endothelial growth factor (VEGF) and fibroblast growth factor (FGF) alone or VEGF/FGF combinations do not support these responses. In contrast, VEGF and FGF prime EC responses to hematopoietic cytokines via up-regulation of c-Kit, IL-3Rα, and C-X-C chemokine receptor type 4 from either human ECs or embryonic quail vessel explants. In support of these findings, EC Runx1 is demonstrated to be critical in coordinating vascular morphogenic responses by controlling hematopoietic cytokine receptor expression. Combined blockade of hematopoietic cytokines or their receptors in vivo leads to blockade of developmental vascularization in quail embryos manifested by vascular hemorrhage and disrupted vascular remodeling events in multiple tissue beds. This work demonstrates a unique role for hematopoietic stem cell cytokines in vascular tube morphogenesis and sprouting and further demonstrates a novel upstream priming role for VEGF and FGF to facilitate the action of promorphogenic hematopoietic cytokines.


Assuntos
Capilares/efeitos dos fármacos , Citocinas/farmacologia , Endotélio Vascular/efeitos dos fármacos , Fatores de Crescimento de Fibroblastos/farmacologia , Células-Tronco Hematopoéticas/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Pseudópodes/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/farmacologia , Animais , Capilares/crescimento & desenvolvimento , Bovinos , Células Cultivadas , Citocinas/metabolismo , Sinergismo Farmacológico , Endotélio Vascular/metabolismo , Endotélio Vascular/fisiologia , Fatores de Crescimento de Fibroblastos/fisiologia , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/fisiologia , Humanos , Modelos Biológicos , Pseudópodes/metabolismo , Pseudópodes/fisiologia , Codorniz/embriologia , Codorniz/fisiologia , Fatores de Tempo , Fator A de Crescimento do Endotélio Vascular/fisiologia
16.
Blood ; 116(22): 4720-30, 2010 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-20739660

RESUMO

Recently, we reported a novel system whereby human pericytes are recruited to endothelial cell (EC)-lined tubes in 3-dimensional (3D) extracellular matrices to stimulate vascular maturation including basement membrane matrix assembly. Through the use of this serum-free, defined system, we demonstrate that pericyte motility within 3D collagen matrices is dependent on the copresence of ECs. Using either soluble receptor traps consisting of the extracellular ligand-binding domains of platelet-derived growth factor receptor ß, epidermal growth factor receptor (EGFR), and ErbB4 receptors or blocking antibodies directed to platelet-derived growth factor (PDGF)-BB, or heparin-binding EGF-like growth factor (HB-EGF), we show that both of these EC-derived ligands are required to control pericyte motility, proliferation, and recruitment along the EC tube ablumenal surface. Blockade of pericyte recruitment causes a lack of basement membrane matrix deposition and, concomitantly, increased vessel widths. Combined inhibition of PDGF-BB and HB-EGF-induced signaling in quail embryos leads to reduced pericyte recruitment to EC tubes, decreased basement membrane matrix deposition, increased vessel widths, and vascular hemorrhage phenotypes in vivo, in support of our findings in vitro. In conclusion, we report a dual role for EC-derived PDGF-BB and HB-EGF in controlling pericyte recruitment to EC-lined tubes during developmental vascularization events.


Assuntos
Vasos Sanguíneos/crescimento & desenvolvimento , Células Endoteliais/metabolismo , Endotélio Vascular/citologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Pericitos/citologia , Fator de Crescimento Derivado de Plaquetas/metabolismo , Animais , Becaplermina , Linhagem Celular , Movimento Celular , Proliferação de Células , Embrião não Mamífero/patologia , Endotélio Vascular/metabolismo , Fator de Crescimento Semelhante a EGF de Ligação à Heparina , Humanos , Pericitos/metabolismo , Proteínas Proto-Oncogênicas c-sis , Codorniz
17.
J Cell Sci ; 122(Pt 24): 4558-69, 2009 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-19934222

RESUMO

Complex signaling events control tumor invasion in three-dimensional (3D) extracellular matrices. Recent evidence suggests that cells utilize both matrix metalloproteinase (MMP)-dependent and MMP-independent means to traverse 3D matrices. Herein, we demonstrate that lysophosphatidic-acid-induced HT1080 cell invasion requires membrane-type-1 (MT1)-MMP-mediated collagenolysis to generate matrix conduits the width of a cellular nucleus. We define these spaces as single-cell invasion tunnels (SCITs). Once established, cells can migrate within SCITs in an MMP-independent manner. Endothelial cells, smooth muscle cells and fibroblasts also generate SCITs during invasive events, suggesting that SCIT formation represents a fundamental mechanism of cellular motility within 3D matrices. Coordinated cellular signaling events are required during SCIT formation. MT1-MMP, Cdc42 and its associated downstream effectors such as MRCK (myotonic dystrophy kinase-related Cdc42-binding kinase) and Pak4 (p21 protein-activated kinase 4), protein kinase Calpha and the Rho-associated coiled-coil-containing protein kinases (ROCK-1 and ROCK-2) coordinate signaling necessary for SCIT formation. Finally, we show that MT1-MMP and Cdc42 are fundamental components of a co-associated invasion-signaling complex that controls directed single-cell invasion of 3D collagen matrices.


Assuntos
Matriz Extracelular/metabolismo , Metaloproteinase 14 da Matriz/metabolismo , Invasividade Neoplásica , Neoplasias/metabolismo , Transdução de Sinais , Proteína cdc42 de Ligação ao GTP/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Colágeno/metabolismo , Humanos , Metaloproteinase 14 da Matriz/genética , Modelos Biológicos , Neoplasias/fisiopatologia , Proteína cdc42 de Ligação ao GTP/genética
18.
J Cell Sci ; 122(Pt 11): 1812-22, 2009 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-19435802

RESUMO

In this study, we present data showing that Cdc42-dependent lumen formation by endothelial cells (ECs) in three-dimensional (3D) collagen matrices involves coordinated signaling by PKCepsilon in conjunction with the Src-family kinases (SFKs) Src and Yes. Activated SFKs interact with Cdc42 in multiprotein signaling complexes that require PKCepsilon during this process. Src and Yes are differentially expressed during EC lumen formation and siRNA suppression of either kinase, but not Fyn or Lyn, results in significant inhibition of EC lumen formation. Concurrent with Cdc42 activation, PKCepsilon- and SFK-dependent signaling converge to activate p21-activated kinase (Pak)2 and Pak4 in steps that are also required for EC lumen formation. Pak2 and Pak4 further activate two Raf kinases, B-Raf and C-Raf, leading to ERK1 and ERK2 (ERK1/2) activation, which all seem to be necessary for EC lumen formation. This work reveals a multicomponent kinase signaling pathway downstream of integrin-matrix interactions and Cdc42 activation involving PKCepsilon, Src, Yes, Pak2, Pak4, B-Raf, C-Raf and ERK1/2 to control EC lumen formation in 3D collagen matrices.


Assuntos
Endotélio , Proteína Quinase C-épsilon/metabolismo , Transdução de Sinais/fisiologia , Proteína cdc42 de Ligação ao GTP/metabolismo , Quinases Ativadas por p21/metabolismo , Quinases raf/metabolismo , Quinases da Família src/metabolismo , Células Cultivadas , Colágeno/metabolismo , Células Endoteliais/citologia , Células Endoteliais/fisiologia , Endotélio/citologia , Endotélio/fisiologia , Ativação Enzimática , Inibidores Enzimáticos/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Complexos Multiproteicos/metabolismo , Proteína Quinase C-épsilon/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Técnicas de Cultura de Tecidos , Alicerces Teciduais , Proteína cdc42 de Ligação ao GTP/genética , Quinases Ativadas por p21/genética , Quinases raf/genética , Quinases da Família src/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA