Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
J Clin Invest ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38954478

RESUMO

Cystic fibrosis (CF) results from mutations in the CFTR anion channel, ultimately leading to diminished transepithelial anion secretion and mucociliary clearance. CFTR correctors are therapeutics that restore the folding/trafficking of mutated CFTR to the plasma membrane. The BKCa potassium channel is also critical for maintaining lung ASL volume. Here, we show the CFTR corrector, VX-445 (Elexacaftor), a component of Trikafta, induces K+ secretion across WT and F508del CFTR primary human bronchial epithelial cells (HBEs), which was entirely inhibited by the BKCa antagonist paxilline. Similar results were observed with VX-121 - a corrector under clinical evaluation. Whole-cell patch-clamp recordings confirmed potentiated channel activity from CFTR correctors on the BKCa α-subunit, and excised patch-clamp recordings demonstrated a significant increase in open probability. In mesenteric artery, VX-445 induced a paxilline-sensitive vasorelaxation of preconstricted arteries. VX-445 also reduced action potential firing frequency in primary hippocampal and cortical neurons. VX-445 effects were observed at low micomolar concentrations (1-10 µM) - within the range reported in plasma and tissues from CF patients. We raise the possibilities that CFTR correctors gain additional clinical benefit by activation of BKCa in the lung, yet may lead to adverse events through BKCa activation, elsewhere.

2.
Sci Signal ; 17(821): eadg2622, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38289985

RESUMO

Targeted degradation regulates the activity of the transcriptional repressor Bcl6 and its ability to suppress oxidative stress and inflammation. Here, we report that abundance of endothelial Bcl6 is determined by its interaction with Golgi-localized pannexin 3 (Panx3) and that Bcl6 transcriptional activity protects against vascular oxidative stress. Consistent with data from obese, hypertensive humans, mice with an endothelial cell-specific deficiency in Panx3 had spontaneous systemic hypertension without obvious changes in channel function, as assessed by Ca2+ handling, ATP amounts, or Golgi luminal pH. Panx3 bound to Bcl6, and its absence reduced Bcl6 protein abundance, suggesting that the interaction with Panx3 stabilized Bcl6 by preventing its degradation. Panx3 deficiency was associated with increased expression of the gene encoding the H2O2-producing enzyme Nox4, which is normally repressed by Bcl6, resulting in H2O2-induced oxidative damage in the vasculature. Catalase rescued impaired vasodilation in mice lacking endothelial Panx3. Administration of a newly developed peptide to inhibit the Panx3-Bcl6 interaction recapitulated the increase in Nox4 expression and in blood pressure seen in mice with endothelial Panx3 deficiency. Panx3-Bcl6-Nox4 dysregulation occurred in obesity-related hypertension, but not when hypertension was induced in the absence of obesity. Our findings provide insight into a channel-independent role of Panx3 wherein its interaction with Bcl6 determines vascular oxidative state, particularly under the adverse conditions of obesity.


Assuntos
Hipertensão , Fatores de Transcrição , Animais , Humanos , Camundongos , Diferenciação Celular , Proliferação de Células/fisiologia , Conexinas/metabolismo , Peróxido de Hidrogênio/farmacologia , Obesidade , Estresse Oxidativo , Proteínas Proto-Oncogênicas c-bcl-6/metabolismo , Fatores de Transcrição/metabolismo
3.
Redox Biol ; 68: 102941, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37907055

RESUMO

Sickle cell disease (SCD) is a hereditary hematological disease with high morbidity and mortality rates worldwide. Despite being monogenic, SCD patients display a plethora of disease-associated complications including anemia, oxidative stress, sterile inflammation, vaso-occlusive crisis-related pain, and vasculopathy, all of which contribute to multiorgan dysfunction and failure. Over the past decade, numerous small molecule drugs, biologics, and gene-based interventions have been evaluated; however, only four disease-modifying drug therapies are presently FDA approved. Barriers regarding effectiveness, accessibility, affordability, tolerance, and compliance of the current polypharmacy-based disease-management approaches are challenging. As such, there is an unmet pharmacological need for safer, more efficacious, and logistically accessible treatment options for SCD patients. Herein, we evaluate the potential of small molecule nitroalkenes such as nitro-fatty acid (NO2-FA) as a therapy for SCD. These agents are electrophilic and exert anti-inflammatory and tissue repair effects through an ability to transiently post-translationally bind to and modify transcription factors, pro-inflammatory enzymes and cell signaling mediators. Preclinical and clinical studies affirm safety of the drug class and a murine model of SCD reveals protection against inflammation, fibrosis, and vascular dysfunction. Despite protective cardiac, renal, pulmonary, and central nervous system effects of nitroalkenes, they have not previously been considered as therapy for SCD. We highlight the pathways targeted by this drug class, which can potentially prevent the end-organ damage associated with SCD and contrast their prospective therapeutic benefits for SCD as opposed to current polypharmacy approaches.


Assuntos
Anemia Falciforme , Doenças Vasculares , Humanos , Animais , Camundongos , Anemia Falciforme/tratamento farmacológico , Dor , Inflamação/complicações
4.
Redox Biol ; 67: 102866, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37703667

RESUMO

We recently reported a previously unknown salutary role for xanthine oxidoreductase (XOR) in intravascular heme overload whereby hepatocellular export of XOR to the circulation was identified as a seminal step in affording protection. However, the cellular signaling and export mechanisms underpinning this process were not identified. Here, we present novel data showing hepatocytes upregulate XOR expression/protein abundance and actively release it to the extracellular compartment following exposure to hemopexin-bound hemin, hemin or free iron. For example, murine (AML-12 cells) hepatocytes treated with hemin (10 µM) exported XOR to the medium in the absence of cell death or loss of membrane integrity (2.0 ± 1.0 vs 16 ± 9 µU/mL p < 0.0001). The path of exocytosis was found to be noncanonical as pretreatment of the hepatocytes with Vaculin-1, a lysosomal trafficking inhibitor, and not Brefeldin A inhibited XOR release and promoted intracellular XOR accumulation (84 ± 17 vs 24 ± 8 hemin vs 5 ± 3 control µU/mg). Interestingly, free iron (Fe2+ and Fe3+) induced similar upregulation and release of XOR compared to hemin. Conversely, concomitant treatment with hemin and the classic transition metal chelator DTPA (20 µM) or uric acid completely blocked XOR release (p < 0.01). Our previously published time course showed XOR release from hepatocytes likely required transcriptional upregulation. As such, we determined that both Sp1 and NF-kB were acutely activated by hemin treatment (∼2-fold > controls for both, p < 0.05) and that silencing either or TLR4 with siRNA prevented hemin-induced XOR upregulation (p < 0.01). Finally, to confirm direct action of these transcription factors on the Xdh gene, chromatin immunoprecipitation was performed indicating that hemin significantly enriched (∼5-fold) both Sp1 and NF-kB near the transcription start site. In summary, our study identified a previously unknown pathway by which XOR is upregulated via SP1/NF-kB and subsequently exported to the extracellular environment. This is, to our knowledge, the very first study to demonstrate mechanistically that XOR can be specifically targeted for export as the seminal step in a compensatory response to heme/Fe overload.


Assuntos
Hemina , Xantina Desidrogenase , Animais , Camundongos , Xantina Desidrogenase/genética , Xantina Desidrogenase/metabolismo , Hemina/farmacologia , Ferro , NF-kappa B , Heme , Hepatócitos/metabolismo
5.
Redox Biol ; 62: 102636, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36906950

RESUMO

Xanthine oxidase (XO) catalyzes the catabolism of hypoxanthine to xanthine and xanthine to uric acid, generating oxidants as a byproduct. Importantly, XO activity is elevated in numerous hemolytic conditions including sickle cell disease (SCD); however, the role of XO in this context has not been elucidated. Whereas long-standing dogma suggests elevated levels of XO in the vascular compartment contribute to vascular pathology via increased oxidant production, herein, we demonstrate, for the first time, that XO has an unexpected protective role during hemolysis. Using an established hemolysis model, we found that intravascular hemin challenge (40 µmol/kg) resulted in a significant increase in hemolysis and an immense (20-fold) elevation in plasma XO activity in Townes sickle cell phenotype (SS) sickle mice compared to controls. Repeating the hemin challenge model in hepatocyte-specific XO knockout mice transplanted with SS bone marrow confirmed the liver as the source of enhanced circulating XO as these mice demonstrated 100% lethality compared to 40% survival in controls. In addition, studies in murine hepatocytes (AML12) revealed hemin mediates upregulation and release of XO to the medium in a toll like receptor 4 (TLR4)-dependent manner. Furthermore, we demonstrate that XO degrades oxyhemoglobin and releases free hemin and iron in a hydrogen peroxide-dependent manner. Additional biochemical studies revealed purified XO binds free hemin to diminish the potential for deleterious hemin-related redox reactions as well as prevents platelet aggregation. In the aggregate, data herein reveals that intravascular hemin challenge induces XO release by hepatocytes through hemin-TLR4 signaling, resulting in an immense elevation of circulating XO. This increased XO activity in the vascular compartment mediates protection from intravascular hemin crisis by binding and potentially degrading hemin at the apical surface of the endothelium where XO is known to be bound and sequestered by endothelial glycosaminoglycans (GAGs).


Assuntos
Hemólise , Receptor 4 Toll-Like , Xantina Oxidase , Animais , Camundongos , Hemina , Fígado/metabolismo , Camundongos Knockout , Oxidantes , Xantina , Xantina Oxidase/metabolismo , Xantinas
6.
JCI Insight ; 8(5)2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36749633

RESUMO

Type II alveolar epithelial cell (AECII) redox imbalance contributes to the pathogenesis of idiopathic pulmonary fibrosis (IPF), a deadly disease with limited treatment options. Here, we show that expression of membrane-bound cytochrome B5 reductase 3 (CYB5R3), an enzyme critical for maintaining cellular redox homeostasis and soluble guanylate cyclase (sGC) heme iron redox state, is diminished in IPF AECIIs. Deficiency of CYB5R3 in AECIIs led to sustained activation of the pro-fibrotic factor TGF-ß1 and increased susceptibility to lung fibrosis. We further show that CYB5R3 is a critical regulator of ERK1/2 phosphorylation and the sGC/cGMP/protein kinase G axis that modulates activation of the TGF-ß1 signaling pathway. We demonstrate that sGC agonists (BAY 41-8543 and BAY 54-6544) are effective in reducing the pulmonary fibrotic outcomes of in vivo deficiency of CYB5R3 in AECIIs. Taken together, these results show that CYB5R3 in AECIIs is required to maintain resilience after lung injury and fibrosis and that therapeutic manipulation of the sGC redox state could provide a basis for treating fibrotic conditions in the lung and beyond.


Assuntos
Células Epiteliais Alveolares , Fibrose Pulmonar Idiopática , Humanos , Células Epiteliais Alveolares/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Fibrose Pulmonar Idiopática/metabolismo , Transdução de Sinais , Citocromo-B(5) Redutase/metabolismo
7.
J Biol Chem ; 298(12): 102654, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36441026

RESUMO

The cytochrome-b5 reductase (CYB5R) family of flavoproteins is known to regulate reduction-oxidation (redox) balance in cells. The five enzyme members are highly compartmentalized at the subcellular level and function as "redox switches" enabling the reduction of several substrates, such as heme and coenzyme Q. Critical insight into the physiological and pathophysiological significance of CYB5R enzymes has been gleaned from several human genetic variants that cause congenital disease and a broad spectrum of chronic human diseases. Among the CYB5R genetic variants, CYB5R3 is well-characterized and deficiency in expression and activity is associated with type II methemoglobinemia, cancer, neurodegenerative disorders, diabetes, and cardiovascular disease. Importantly, pharmacological and genetic-based strategies are underway to target CYB5R3 to circumvent disease onset and mitigate severity. Despite our knowledge of CYB5R3 in human health and disease, the other reductases in the CYB5R family have been understudied, providing an opportunity to unravel critical function(s) for these enzymes in physiology and disease. In this review, we aim to provide the broad scientific community an up-to-date overview of the molecular, cellular, physiological, and pathophysiological roles of CYB5R proteins.


Assuntos
Citocromo-B(5) Redutase , Metemoglobinemia , Humanos , Citocromo-B(5) Redutase/genética , Citocromo-B(5) Redutase/metabolismo , Citocromos b5/metabolismo , Metemoglobinemia/congênito , Metemoglobinemia/genética , Oxirredução , Homeostase , Redutases do Citocromo/metabolismo
8.
J Clin Invest ; 132(18)2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36106636

RESUMO

Sudden cardiac death (SCD) in patients with heart failure (HF) is allied with an imbalance in reduction and oxidation (redox) signaling in cardiomyocytes; however, the basic pathways and mechanisms governing redox homeostasis in cardiomyocytes are not fully understood. Here, we show that cytochrome b5 reductase 3 (CYB5R3), an enzyme known to regulate redox signaling in erythrocytes and vascular cells, is essential for cardiomyocyte function. Using a conditional cardiomyocyte-specific CYB5R3-knockout mouse, we discovered that deletion of CYB5R3 in male, but not female, adult cardiomyocytes causes cardiac hypertrophy, bradycardia, and SCD. The increase in SCD in CYB5R3-KO mice is associated with calcium mishandling, ventricular fibrillation, and cardiomyocyte hypertrophy. Molecular studies reveal that CYB5R3-KO hearts display decreased adenosine triphosphate (ATP), increased oxidative stress, suppressed coenzyme Q levels, and hemoprotein dysregulation. Finally, from a translational perspective, we reveal that the high-frequency missense genetic variant rs1800457, which translates into a CYB5R3 T117S partial loss-of-function protein, associates with decreased event-free survival (~20%) in Black persons with HF with reduced ejection fraction (HFrEF). Together, these studies reveal a crucial role for CYB5R3 in cardiomyocyte redox biology and identify a genetic biomarker for persons of African ancestry that may potentially increase the risk of death from HFrEF.


Assuntos
Insuficiência Cardíaca , Miócitos Cardíacos , Animais , Morte Súbita Cardíaca , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Masculino , Camundongos , Camundongos Knockout , Miócitos Cardíacos/metabolismo , Oxirredução , Volume Sistólico
9.
JAMA Cardiol ; 7(3): 268-276, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35044418

RESUMO

IMPORTANCE: Hypertensive disorders of pregnancy are associated with future cardiovascular disease, perhaps because of subclinical cardiac dysfunction before pregnancy leading to impaired adaptation to pregnancy. Natriuretic peptides are promising biomarkers for detecting subclinical cardiac dysfunction outside of pregnancy. OBJECTIVE: To investigate whether higher concentrations of N-terminal pro-brain natriuretic peptide (NT-proBNP) in early pregnancy would be associated with hypertensive disorders of pregnancy and hypertension 2 to 7 years post partum. DESIGN, SETTING, AND PARTICIPANTS: This cohort study used data from the The Nulliparous Pregnancy Outcomes Study: Monitoring Mothers-to-Be Heart Health Study, a prospective multicenter observational study. A total of 4103 nulliparous women with complete data and no prepregnancy hypertension or diabetes who were treated at 8 clinical sites were included. Women were followed up with for 2 to 7 years after pregnancy. Data were collected from October 2010 to October 2017, and data were analyzed from August 2020 to November 2021. EXPOSURES: NT-proBNP concentration, measured using an electrochemiluminescence immunoassay from a first-trimester blood sample. MAIN OUTCOMES AND MEASURES: Hypertensive disorders of pregnancy and incident hypertension (systolic blood pressure of 130 mm Hg or diastolic blood pressure of 80 mm Hg or use of antihypertensive agents) at follow-up visit. RESULTS: A total of 4103 women met inclusion criteria; the mean (SD) age was 27.0 (5.6) years. Among these women, 909 (22.2%) had an adverse pregnancy outcome, and 817 (19.9%) had hypertension at the follow-up visit. Higher NT-proBNP concentrations were associated with a lower risk of hypertensive disorders of pregnancy (adjusted odds ratio per doubling, 0.81; 95% CI, 0.73-0.91), which persisted after adjustment for age, self-reported race and ethnicity, early-pregnancy body mass index, smoking, and aspirin use. Similarly, higher NT-proBNP concentration in early pregnancy was also associated with a lower risk of incident hypertension 2 to 7 years after delivery (adjusted odds ratio per doubling, 0.84; 95% CI, 0.77-0.93), an association that persisted after controlling for confounders, including hypertensive disorders of pregnancy. CONCLUSIONS AND RELEVANCE: In this cohort study, higher NT-proBNP concentrations in early pregnancy were associated with a lower risk of hypertensive disorders of pregnancy and hypertension 2 to 7 years post partum. These findings suggest that normal early-pregnancy cardiovascular physiology, as assessed by NT-proBNP concentration, may provide biologic insights into both pregnancy outcome and cardiovascular disease risk.


Assuntos
Doenças Cardiovasculares , Cardiopatias , Hipertensão Induzida pela Gravidez , Adulto , Estudos de Coortes , Feminino , Humanos , Hipertensão Induzida pela Gravidez/epidemiologia , Masculino , Peptídeo Natriurético Encefálico , Fragmentos de Peptídeos , Gravidez , Estudos Prospectivos
10.
Am J Physiol Heart Circ Physiol ; 322(3): H417-H426, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35089807

RESUMO

Nitric oxide (NO) binds soluble guanylyl cyclase ß (sGCß) to produce cGMP and relax vascular smooth muscle cells (SMCs) needed for vasodilation. Although the regulation of NO-stimulated sGC activity has been well characterized at the posttranslational level, the mechanisms that govern sGC transcription remain incompletely understood. Recently, we identified Forkhead box subclass O (FoxO) transcription factors as essential for expression of sGC; however, the specific FoxO family member responsible for the expression of sGCß in SMC remains unknown. Using FoxO shRNA knockdown adenovirus treatment in rat aortic SMCs, we show that FoxO1 or FoxO3 knockdown causes greater than twofold increases in Gucy1a3 and Gucy1b3 mRNA expression, without changes in NO-dependent cGMP production or cGMP-dependent phosphorylation. FoxO4 knockdown produced a 50% decrease in Gucy1a3 and Gucy1b3 mRNA with 70% loss of sGCα and 50% loss of sGCß protein expression. Knockdown of FoxO4 expression decreased cGMP production and downstream protein kinase G-dependent phosphorylation more than 50%. Triple FoxO knockdown exacerbated loss of sGC-dependent function, phenocopying previous FoxO inhibition studies. Using promoter luciferase and chromatin immunoprecipitation assays, we find that FoxO4 acts as a transcriptional activator by directly binding several FoxO DNA motifs in the promoter regions of GUCY1B3 in human aortic SMCs. Collectively, our data show FoxO4 is a critical transcriptional regulator of sGCß expression in SMC.NEW & NOTEWORTHY One of the key mechanisms of vascular smooth muscle cell (SMC) dilation occurs through nitric oxide (NO)-dependent induction of soluble guanylyl cyclase (sGC) by means of its ß-subunit. Herein, we are the first to identify Forkhead box subclass O protein 4 (FoxO4) as a key transcriptional regulator of GUCY1B3 expression, which codes for sGCß protein in human and animal SMCs. This discovery will likely have important implications for the future usage of antihypertensive and vasodilatory therapies which target NO production, sGC, or FoxO transcription factors.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Músculo Liso Vascular/metabolismo , Guanilil Ciclase Solúvel/genética , Animais , Aorta/citologia , Células Cultivadas , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/metabolismo , Ratos , Guanilil Ciclase Solúvel/metabolismo
11.
J Pathol ; 256(4): 442-454, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34936088

RESUMO

Benign prostatic hyperplasia (BPH) is a feature of ageing males. Up to half demonstrate bladder outlet obstruction (BOO) with associated lower urinary tract symptoms (LUTS) including bladder overactivity. Current therapies to reduce obstruction, such as α1-adrenoceptor antagonists and 5α-reductase inhibitors, are not effective in all patients. The phosphodiesterase-5 inhibitor (PDE5I) tadalafil is also approved to treat BPH and LUTS, suggesting a role for nitric oxide (NO• ), soluble guanylate cyclase (sGC), and cGMP signalling pathways. However, PDE5I refractoriness can develop for reasons including nitrergic nerve damage and decreased NO• production, or inflammation-related oxidation of the sGC haem group, normally maintained in a reduced state by the cofactor cytochrome-b5-reductase 3 (CYB5R3). sGC activators, such as cinaciguat (BAY 58-2667), have been developed to enhance sGC activity in the absence of NO• or when sGC is oxidised. Accordingly, their effects on the prostate and LUT function of aged mice were evaluated. Aged mice (≥24 months) demonstrated a functional BPH/BOO phenotype, compared with adult animals (2-12 months), with low, delayed voiding responses and elevated intravesical pressures as measured by telemetric cystometry. This was consistent with outflow tract histological and molecular data that showed urethral constriction, increased prostate weight, greater collagen deposition, and cellular hyperplasia. All changes in aged animals were attenuated by daily oral treatment with cinaciguat for 2 weeks, without effect on serum testosterone levels. Cinaciguat had only transient (1 h) cardiovascular effects with oral gavage, suggesting a positive safety profile. The benefit of cinaciguat was suggested by its reversal of an overactive cystometric profile in CYB5R3 smooth muscle knockout mice that mirrors a profile of oxidative dysfunction where PDE5I may not be effective. Thus, the aged male mouse is a suitable model for BPH-induced BOO and cinaciguat has a demonstrated ability to reduce prostate-induced obstruction and consequent effects on bladder function. © 2021 The Pathological Society of Great Britain and Ireland.


Assuntos
Hiperplasia Prostática , Animais , Humanos , Masculino , Camundongos , Óxido Nítrico/metabolismo , Oxirredutases , Próstata/metabolismo , Hiperplasia Prostática/tratamento farmacológico , Guanilil Ciclase Solúvel
12.
Proc Natl Acad Sci U S A ; 118(42)2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34654740

RESUMO

In an aging population, intense interest has shifted toward prolonging health span. Mounting evidence suggests that cellular reactive species are propagators of cell damage, inflammation, and cellular senescence. Thus, such species have emerged as putative provocateurs and targets for senolysis, and a clearer understanding of their molecular origin and regulation is of paramount importance. In an inquiry into signaling triggered by aging and proxy instigator, hyperglycemia, we show that NADPH Oxidase (NOX) drives cell DNA damage and alters nuclear envelope integrity, inflammation, tissue dysfunction, and cellular senescence in mice and humans with similar causality. Most notably, selective NOX1 inhibition rescues age-impaired blood flow and angiogenesis, vasodilation, and the endothelial cell wound response. Indeed, NOX1i delivery in vivo completely reversed age-impaired hind-limb blood flow and angiogenesis while disrupting a NOX1-IL-6 senescence-associated secretory phenotype (SASP) proinflammatory signaling loop. Relevant to its comorbidity with age, clinical samples from diabetic versus nondiabetic subjects reveal as operant this NOX1-mediated vascular senescence and inflammation in humans. On a mechanistic level, our findings support a previously unidentified role for IL-6 in this feedforward inflammatory loop and peroxisome proliferator-activated receptor gamma (PPARγ) down-regulation as inversely modulating p65-mediated NOX1 transcription. Targeting this previously unidentified NOX1-SASP signaling axis in aging is predicted to be an effective strategy for mitigating senescence in the vasculature and other organ systems.


Assuntos
Envelhecimento/fisiologia , Interleucina-6/metabolismo , NADPH Oxidases/metabolismo , Neovascularização Fisiológica/fisiologia , Fenótipo Secretor Associado à Senescência , Animais , Dano ao DNA , Técnicas de Silenciamento de Genes , Humanos , Hiperglicemia/metabolismo , Camundongos , NADPH Oxidases/antagonistas & inibidores , NADPH Oxidases/genética
13.
Redox Biol ; 47: 102166, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34656824

RESUMO

NADPH oxidase 4 (NOX4) regulates endothelial inflammation by producing hydrogen peroxide (H2O2) and to a lesser extent O2•-. The ratio of NOX4-derived H2O2 and O2•- can be altered by coenzyme Q (CoQ) mimics. Therefore, we hypothesize that cytochrome b5 reductase 3 (CYB5R3), a CoQ reductase abundant in vascular endothelial cells, regulates inflammatory activation. To examine endothelial CYB5R3 in vivo, we created tamoxifen-inducible endothelium-specific Cyb5r3 knockout mice (R3 KO). Radiotelemetry measurements of systolic blood pressure showed systemic hypotension in lipopolysaccharides (LPS) challenged mice, which was exacerbated in R3 KO mice. Meanwhile, LPS treatment caused greater endothelial dysfunction in R3 KO mice, evaluated by acetylcholine-induced vasodilation in the isolated aorta, accompanied by elevated mRNA expression of vascular adhesion molecule 1 (Vcam-1). Similarly, in cultured human aortic endothelial cells (HAEC), LPS and tumor necrosis factor α (TNF-α) induced VCAM-1 protein expression was enhanced by Cyb5r3 siRNA, which was ablated by silencing the Nox4 gene simultaneously. Moreover, super-resolution confocal microscopy indicated mitochondrial co-localization of CYB5R3 and NOX4 in HAECs. APEX2-based electron microscopy and proximity biotinylation also demonstrated CYB5R3's localization on the mitochondrial outer membrane and its interaction with NOX4, which was further confirmed by the proximity ligation assay. Notably, Cyb5r3 knockdown HAECs showed less total H2O2 but more mitochondrial O2•-. Using inactive or non-membrane bound active CYB5R3, we found that CYB5R3 activity and membrane translocation are needed for optimal generation of H2O2 by NOX4. Lastly, cells lacking the CoQ synthesizing enzyme COQ6 showed decreased NOX4-derived H2O2, indicating a requirement for endogenous CoQ in NOX4 activity. In conclusion, CYB5R3 mitigates endothelial inflammatory activation by assisting in NOX4-dependent H2O2 generation via CoQ.


Assuntos
Citocromo-B(5) Redutase/metabolismo , Células Endoteliais , Peróxido de Hidrogênio , Animais , Células Cultivadas , Endotélio , Inflamação/genética , Camundongos , NADPH Oxidase 4/genética , NADPH Oxidases , Espécies Reativas de Oxigênio , Ubiquinona
14.
Am J Physiol Heart Circ Physiol ; 321(3): H542-H557, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34296965

RESUMO

Pulmonary arterial hypertension (PAH) is a fatal cardiopulmonary disease characterized by increased vascular cell proliferation with apoptosis resistance and occlusive remodeling of the small pulmonary arteries. The Notch family of proteins subserves proximal signaling of an evolutionarily conserved pathway that effects cell proliferation, fate determination, and development. In endothelial cells (ECs), Notch receptor 2 (Notch2) was shown to promote endothelial apoptosis. However, a pro- or antiproliferative role for Notch2 in pulmonary endothelial proliferation and ensuing PAH is unknown. We postulated that suppressed Notch2 signaling drives pulmonary endothelial proliferation in the context of PAH. We observed that levels of Notch2 are ablated in lungs from PAH subjects compared with non-PAH controls. Notch2 expression was attenuated in human pulmonary artery endothelial cells (hPAECs) exposed to vasoactive stimuli including hypoxia, TGF-ß, ET-1, and IGF-1. Notch2-deficient hPAECs activated Akt, Erk1/2, and antiapoptotic protein Bcl-2 and reduced levels of p21cip and Bax associated with increased EC proliferation and reduced apoptosis. In addition, Notch2 suppression elicited a paradoxical activation of Notch1 and canonical Notch target gene Hes1, Hey1, and Hey2 transcription. Furthermore, reduction in Rb and increased E2F1 binding to the Notch1 promoter appear to explain the Notch1 upregulation. Yet, when Notch1 was decreased in Notch2-suppressed cells, the wound injury response was augmented. In aggregate, our results demonstrate that loss of Notch2 in hPAECs derepresses Notch1 and elicits EC hallmarks of PAH. Augmented EC proliferation upon Notch1 knockdown points to a context-dependent role for Notch1 and 2 in endothelial cell homeostasis.NEW & NOTEWORTHY This study demonstrates a previously unidentified role for Notch2 in the maintenance of lung vascular endothelial cell quiescence and pulmonary artery hypertension (PAH). A key novel finding is that Notch2 suppression activates Notch1 via Rb-E2F1-mediated signaling and induces proliferation and apoptosis resistance in human pulmonary artery endothelial cells. Notably, PAH patients show reduced levels of endothelial Notch2 in their pulmonary arteries, supporting Notch2 as a fundamental driver of PAH pathogenesis.


Assuntos
Proliferação de Células , Células Endoteliais/metabolismo , Hipertensão Pulmonar/metabolismo , Receptor Notch2/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Células Endoteliais/fisiologia , Endotélio Vascular/citologia , Humanos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Artéria Pulmonar/citologia , Artéria Pulmonar/metabolismo , Receptor Notch1/metabolismo , Receptor Notch2/genética , Proteínas Repressoras/metabolismo , Fatores de Transcrição HES-1/metabolismo
15.
Circulation ; 144(8): 615-637, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34157861

RESUMO

BACKGROUND: Many patients with heart failure with preserved ejection fraction have metabolic syndrome and develop exercise-induced pulmonary hypertension (EIPH). Increases in pulmonary vascular resistance in patients with heart failure with preserved ejection fraction portend a poor prognosis; this phenotype is referred to as combined precapillary and postcapillary pulmonary hypertension (CpcPH). Therapeutic trials for EIPH and CpcPH have been disappointing, suggesting the need for strategies that target upstream mechanisms of disease. This work reports novel rat EIPH models and mechanisms of pulmonary vascular dysfunction centered around the transcriptional repression of the soluble guanylate cyclase (sGC) enzyme in pulmonary artery (PA) smooth muscle cells. METHODS: We used obese ZSF-1 leptin-receptor knockout rats (heart failure with preserved ejection fraction model), obese ZSF-1 rats treated with SU5416 to stimulate resting pulmonary hypertension (obese+sugen, CpcPH model), and lean ZSF-1 rats (controls). Right and left ventricular hemodynamics were evaluated using implanted catheters during treadmill exercise. PA function was evaluated with magnetic resonance imaging and myography. Overexpression of nuclear factor Y α subunit (NFYA), a transcriptional enhancer of sGC ß1 subunit (sGCß1), was performed by PA delivery of adeno-associated virus 6. Treatment groups received the SGLT2 inhibitor empagliflozin in drinking water. PA smooth muscle cells from rats and humans were cultured with palmitic acid, glucose, and insulin to induce metabolic stress. RESULTS: Obese rats showed normal resting right ventricular systolic pressures, which significantly increased during exercise, modeling EIPH. Obese+sugen rats showed anatomic PA remodeling and developed elevated right ventricular systolic pressure at rest, which was exacerbated with exercise, modeling CpcPH. Myography and magnetic resonance imaging during dobutamine challenge revealed PA functional impairment of both obese groups. PAs of obese rats produced reactive oxygen species and decreased sGCß1 expression. Mechanistically, cultured PA smooth muscle cells from obese rats and humans with diabetes or treated with palmitic acid, glucose, and insulin showed increased mitochondrial reactive oxygen species, which enhanced miR-193b-dependent RNA degradation of nuclear factor Y α subunit (NFYA), resulting in decreased sGCß1-cGMP signaling. Forced NYFA expression by adeno-associated virus 6 delivery increased sGCß1 levels and improved exercise pulmonary hypertension in obese+sugen rats. Treatment of obese+sugen rats with empagliflozin improved metabolic syndrome, reduced mitochondrial reactive oxygen species and miR-193b levels, restored NFYA/sGC activity, and prevented EIPH. CONCLUSIONS: In heart failure with preserved ejection fraction and CpcPH models, metabolic syndrome contributes to pulmonary vascular dysfunction and EIPH through enhanced reactive oxygen species and miR-193b expression, which downregulates NFYA-dependent sGCß1 expression. Adeno-associated virus-mediated NFYA overexpression and SGLT2 inhibition restore NFYA-sGCß1-cGMP signaling and ameliorate EIPH.


Assuntos
Fator de Ligação a CCAAT/metabolismo , Insuficiência Cardíaca/etiologia , Hipertensão Pulmonar/complicações , Hipertensão Pulmonar/etiologia , Síndrome Metabólica/genética , Síndrome Metabólica/metabolismo , MicroRNAs/genética , Espécies Reativas de Oxigênio/metabolismo , Guanilil Ciclase Solúvel/genética , Animais , Animais Geneticamente Modificados , Biomarcadores , Modelos Animais de Doenças , Suscetibilidade a Doenças , Exercício Físico , Regulação da Expressão Gênica , Insuficiência Cardíaca/diagnóstico , Humanos , Síndrome Metabólica/complicações , Mitocôndrias Cardíacas , Miócitos de Músculo Liso/metabolismo , Fenótipo , Ratos , Transdução de Sinais , Estresse Fisiológico , Volume Sistólico , Disfunção Ventricular Direita
16.
Cells ; 9(7)2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32679764

RESUMO

The aged population is currently at its highest level in human history and is expected to increase further in the coming years. In humans, aging is accompanied by impaired angiogenesis, diminished blood flow and altered metabolism, among others. A cellular mechanism that impinges upon these manifestations of aging can be a suitable target for therapeutic intervention. Here we identify cell surface receptor CD47 as a novel age-sensitive driver of vascular and metabolic dysfunction. With the natural aging process, CD47 and its ligand thrombospondin-1 were increased, concurrent with a reduction of self-renewal transcription factors OCT4, SOX2, KLF4 and cMYC (OSKM) in arteries from aged wild-type mice and older human subjects compared to younger controls. These perturbations were prevented in arteries from aged CD47-null mice. Arterial endothelial cells isolated from aged wild-type mice displayed cellular exhaustion with decreased proliferation, migration and tube formation compared to cells from aged CD47-null mice. CD47 suppressed ex vivo sprouting, in vivo angiogenesis and skeletal muscle blood flow in aged wild-type mice. Treatment of arteries from older humans with a CD47 blocking antibody mitigated the age-related deterioration in angiogenesis. Finally, aged CD47-null mice were resistant to age- and diet-associated weight gain, glucose intolerance and insulin desensitization. These results indicate that the CD47-mediated signaling maladapts during aging to broadly impair endothelial self-renewal, angiogenesis, perfusion and glucose homeostasis. Our findings provide a strong rationale for therapeutically targeting CD47 to minimize these dysfunctions during aging.


Assuntos
Envelhecimento/patologia , Antígeno CD47/metabolismo , Glucose/metabolismo , Homeostase , Neovascularização Fisiológica , Animais , Artérias/patologia , Movimento Celular/genética , Proliferação de Células/genética , Autorrenovação Celular , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Regulação da Expressão Gênica , Humanos , Fator 4 Semelhante a Kruppel , Masculino , Metaloproteinases da Matriz/metabolismo , Síndrome Metabólica/patologia , Camundongos Endogâmicos C57BL , Neovascularização Fisiológica/genética , Fluxo Sanguíneo Regional , Trombospondina 1/metabolismo , Fatores de Transcrição/metabolismo
17.
JCI Insight ; 5(1)2020 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-31941842

RESUMO

Lithium (Li) is the mainstay pharmacotherapeutic mood stabilizer in bipolar disorder. Its efficacious use is complicated by acute and chronic renal side effects, including nephrogenic diabetes insipidus (NDI) and progression to chronic kidney disease (CKD). The nuclear factor erythroid-derived 2-related factor 2 (Nrf2) pathway senses and coordinates cellular responses to oxidative and electrophilic stress. Here, we identify that graded genetic activation of Nrf2 protects against Li-induced NDI (Li-NDI) and volume wasting via an aquaporin 2-independent mechanism. Renal Nrf2 activity is differentially expressed on functional segments of the nephron, and its activation along the distal tubule and collecting duct directly modulates ion transporter expression, mimicking paradoxical effects of diuretics in mitigating Li-NDI. In addition, Nrf2 reduces cyclooxygenase expression and vasoactive prostaglandin biosynthesis. Pharmacologic activation of Nrf2 confers protective effects, confirming this pathway as a potentially novel druggable target for the prevention of acute and chronic renal sequelae of Li therapy.


Assuntos
Diabetes Insípido Nefrogênico/tratamento farmacológico , Lítio/efeitos adversos , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/farmacologia , Animais , Aquaporina 2/metabolismo , Transtorno Bipolar , Ciclo-Oxigenase 1/metabolismo , Diabetes Insípido Nefrogênico/induzido quimicamente , Células Epiteliais , Humanos , Rim/metabolismo , Masculino , Proteínas de Membrana , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 2 Relacionado a NF-E2/genética , Prostaglandina-Endoperóxido Sintases/metabolismo
18.
Nitric Oxide ; 76: 97-104, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29578056

RESUMO

The nitric oxide/soluble guanylyl cyclase (NO-sGC) signaling pathway regulates the cardiovascular, neuronal, and gastrointestinal systems. Impaired sGC signaling can result in disease and system-wide organ failure. This review seeks to examine the redox control of sGC through heme and cysteine regulation while discussing therapeutic drugs that target various conditions. Heme regulation involves mechanisms of insertion of the heme moiety into the sGC protein, the molecules and proteins that control switching between the oxidized (Fe3+) and reduced states (Fe2+), and the activity of heme degradation. Modifications to cysteine residues by S-nitrosation on the α1 and ß1 subunits of sGC have been shown to be important in sGC signaling. Moreover, redox balance and localization of sGC is thought to control downstream effects. In response to altered sGC activity due to changes in the redox state, many therapeutic drugs have been developed to target decreased NO-sGC signaling. The importance and relevance of sGC continues to grow as sGC dysregulation leads to numerous disease conditions.


Assuntos
Guanilil Ciclase Solúvel/metabolismo , Animais , Humanos , Óxido Nítrico/metabolismo , Oxirredução
19.
Am J Respir Cell Mol Biol ; 57(6): 733-744, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28800253

RESUMO

Pulmonary hypertension is characterized by pulmonary endothelial dysfunction. Previous work showed that systemic artery endothelial cells (ECs) express hemoglobin (Hb) α to control nitric oxide (NO) diffusion, but the role of this system in pulmonary circulation has not been evaluated. We hypothesized that up-regulation of Hb α in pulmonary ECs contributes to NO depletion and pulmonary vascular dysfunction in pulmonary hypertension. Primary distal pulmonary arterial vascular smooth muscle cells, lung tissue sections from unused donor (control) and idiopathic pulmonary artery (PA) hypertension lungs, and rat and mouse models of SU5416/hypoxia-induced pulmonary hypertension (PH) were used. Immunohistochemical, immunocytochemical, and immunoblot analyses and transfection, infection, DNA synthesis, apoptosis, migration, cell count, and protein activity assays were performed in this study. Cocultures of human pulmonary microvascular ECs and distal pulmonary arterial vascular smooth muscle cells, lung tissue from control and pulmonary hypertensive lungs, and a mouse model of chronic hypoxia-induced PH were used. Immunohistochemical, immunoblot analyses, spectrophotometry, and blood vessel myography experiments were performed in this study. We find increased expression of Hb α in pulmonary endothelium from humans and mice with PH compared with controls. In addition, we show up-regulation of Hb α in human pulmonary ECs cocultured with PA smooth muscle cells in hypoxia. We treated pulmonary ECs with a Hb α mimetic peptide that disrupts the association of Hb α with endothelial NO synthase, and found that cells treated with the peptide exhibited increased NO signaling compared with a scrambled peptide. Myography experiments using pulmonary arteries from hypoxic mice show that the Hb α mimetic peptide enhanced vasodilation in response to acetylcholine. Our findings reveal that endothelial Hb α functions as an endogenous scavenger of NO in the pulmonary endothelium. Targeting this pathway may offer a novel therapeutic target to increase endogenous levels of NO in PH.


Assuntos
Materiais Biomiméticos/farmacologia , Células Endoteliais/metabolismo , Hemoglobina A/biossíntese , Hipertensão Pulmonar/tratamento farmacológico , Óxido Nítrico/metabolismo , Peptídeos/farmacologia , Artéria Pulmonar/metabolismo , Animais , Técnicas de Cocultura , Modelos Animais de Doenças , Células Endoteliais/patologia , Feminino , Humanos , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/patologia , Hipertensão Pulmonar/fisiopatologia , Masculino , Camundongos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/metabolismo , Artéria Pulmonar/patologia , Artéria Pulmonar/fisiopatologia , Ratos , Regulação para Cima/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos
20.
Am J Physiol Cell Physiol ; 312(3): C254-C262, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-27974299

RESUMO

Nitric oxide (NO) is one of the critical components of the vasculature, regulating key signaling pathways in health. In macrovessels, NO functions to suppress cell inflammation as well as adhesion. In this way, it inhibits thrombosis and promotes blood flow. It also functions to limit vessel constriction and vessel wall remodeling. In microvessels and particularly capillaries, NO, along with growth factors, is important in promoting new vessel formation, a process termed angiogenesis. With age and cardiovascular disease, animal and human studies confirm that NO is dysregulated at multiple levels including decreased production, decreased tissue half-life, and decreased potency. NO has also been implicated in diseases that are related to neurotransmission and cancer although it is likely that these processes involve NO at higher concentrations and from nonvascular cell sources. Conversely, NO and drugs that directly or indirectly increase NO signaling have found clinical applications in both age-related diseases and in younger individuals. This focused review considers recently reported advances being made in the field of NO signaling regulation at several levels including enzymatic production, receptor function, interacting partners, localization of signaling, matrix-cellular and cell-to-cell cross talk, as well as the possible impact these newly described mechanisms have on health and disease.


Assuntos
Vasos Sanguíneos/fisiopatologia , Doenças Cardiovasculares/fisiopatologia , Modelos Cardiovasculares , Neovascularização Fisiológica/fisiologia , Óxido Nítrico/metabolismo , Animais , Velocidade do Fluxo Sanguíneo , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA