Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Redox Rep ; 27(1): 221-229, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36200601

RESUMO

OBJECTIVES: Many plant-derived anti-aging preparations influence antioxidant defense system. Consumption of food supplemented with chili pepper powder was found to extend lifespan in the fruit fly, Drosophila melanogaster. The present study aimed to test a connection between life-extending effect of chili powder and antioxidant defense system of D. melanogaster. METHODS: Flies were reared for 15 days in the mortality cages on food with 0% (control), 0.04%, 0.12%, 0.4%, or 3% chili powder. Antioxidant and related enzymes, as well as oxidative stress indices were measured. RESULTS: Female flies that consumed chili-supplemented food had a 40-60% lower glutathione-S-transferase (GST) activity as compared with the control cohort. Activity of superoxide dismutase (SOD) was about 37% higher in males that consumed food with 3% chili powder in comparison with the control cohort. Many of the parameters studied were sex-dependent. CONCLUSIONS: Consumption of chili-supplemented food extends lifespan in fruit fly cohorts in a concentration- and gender-dependent manner. However, this extension is not mediated by a strengthening of antioxidant defenses. Consumption of chili-supplemented food does not change the specific relationship between antioxidant and related enzymes in D. melanogaster, and does not change the linkage of the activities of these enzymes to fly gender.


Assuntos
Antioxidantes , Drosophila melanogaster , Animais , Antioxidantes/metabolismo , Feminino , Alimentos Fortificados , Glutationa , Masculino , Estresse Oxidativo , Pós/farmacologia , Superóxido Dismutase/metabolismo , Transferases/farmacologia
2.
Cells ; 9(4)2020 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-32225024

RESUMO

The insulin-IGF-1 signaling (IIS) pathway is conserved throughout multicellular organisms and regulates many traits, including aging, reproduction, feeding, metabolism, stress resistance, and growth. Here, we present evidence of a survival-sustaining role for IIS in a subset of gut cells in Drosophila melanogaster, namely the intestinal stem cells (ISCs) and progenitor cells. Using RNAi to knockdown the insulin receptor, we found that inhibition of IIS in ISCs statistically shortened the lifespan of experimental flies compared with non-knockdown controls, and also shortened their survival under starvation or malnutrition conditions. These flies also showed decreased reproduction and feeding, and had lower amounts of glycogen and glucose in the body. In addition, increased expression was observed for the Drosophila transcripts for the insulin-like peptides dilp2, dilp5, and dilp6. This may reflect increased insulin signaling in peripheral tissues supported by up-regulation of the target of the brain insulin gene (tobi). In contrast, activation of IIS (via knockdown of the insulin pathway inhibitor PTEN) in intestinal stem and progenitor cells decreased fly resistance to malnutrition, potentially by affecting adipokinetic hormone signaling. Finally, Pten knockdown to enhance IIS also activated JAK-STAT signaling in gut tissue by up-regulation of upd2, upd3, and soc36 genes, as well as genes encoding the EGF receptor ligands spitz and vein. These results clearly demonstrate that manipulating insulin levels may be used to modulate various fly traits, which are important determinants of organismal survival.


Assuntos
Drosophila melanogaster/metabolismo , Drosophila melanogaster/fisiologia , Insulina/metabolismo , Intestinos/citologia , Transdução de Sinais , Células-Tronco/metabolismo , Animais , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Comportamento Alimentar , Regulação da Expressão Gênica , Glucose/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Longevidade/genética , Especificidade de Órgãos/genética , Peptídeos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Estresse Fisiológico/genética , Análise de Sobrevida
3.
Artigo em Inglês | MEDLINE | ID: mdl-27693629

RESUMO

The TOR (target of rapamycin) signaling pathway and the transcriptional factor Myc play important roles in growth control. Myc acts, in part, as a downstream target of TOR to regulate the activity and functioning of stem cells. Here we explore the role of TOR-Myc axis in stem and progenitor cells in the regulation of lifespan, stress resistance and metabolism in Drosophila. We found that both overexpression of rheb and myc-rheb in midgut stem and progenitor cells decreased the lifespan and starvation resistance of flies. TOR activation caused higher survival under malnutrition conditions. Furthermore, we demonstrate gut-specific activation of JAK/STAT and insulin signaling pathways to control gut integrity. Both genetic manipulations had an impact on carbohydrate metabolism and transcriptional levels of metabolic genes. Our findings indicate that activation of the TOR-Myc axis in midgut stem and progenitor cells influences a variety of traits in Drosophila.


Assuntos
Drosophila melanogaster/fisiologia , Longevidade , Estresse Oxidativo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Transdução de Sinais , Células-Tronco/citologia , Serina-Treonina Quinases TOR/metabolismo , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Ingestão de Alimentos , Feminino , Fertilidade , Regulação da Expressão Gênica , Intestinos/citologia , Proteínas Monoméricas de Ligação ao GTP/genética , Neuropeptídeos/genética , Proteína Enriquecida em Homólogo de Ras do Encéfalo , Células-Tronco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA