Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Blood ; 143(25): 2599-2611, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38493479

RESUMO

ABSTRACT: Chimeric antigen receptor (CAR)-redirected immune cells hold significant therapeutic potential for oncology, autoimmune diseases, transplant medicine, and infections. All approved CAR-T therapies rely on personalized manufacturing using undirected viral gene transfer, which results in nonphysiological regulation of CAR-signaling and limits their accessibility due to logistical challenges, high costs and biosafety requirements. Random gene transfer modalities pose a risk of malignant transformation by insertional mutagenesis. Here, we propose a novel approach utilizing CRISPR-Cas gene editing to redirect T cells and natural killer (NK) cells with CARs. By transferring shorter, truncated CAR-transgenes lacking a main activation domain into the human CD3ζ (CD247) gene, functional CAR fusion-genes are generated that exploit the endogenous CD3ζ gene as the CAR's activation domain. Repurposing this T/NK-cell lineage gene facilitated physiological regulation of CAR expression and redirection of various immune cell types, including conventional T cells, TCRγ/δ T cells, regulatory T cells, and NK cells. In T cells, CD3ζ in-frame fusion eliminated TCR surface expression, reducing the risk of graft-versus-host disease in allogeneic off-the-shelf settings. CD3ζ-CD19-CAR-T cells exhibited comparable leukemia control to TCRα chain constant (TRAC)-replaced and lentivirus-transduced CAR-T cells in vivo. Tuning of CD3ζ-CAR-expression levels significantly improved the in vivo efficacy. Notably, CD3ζ gene editing enabled redirection of NK cells without impairing their canonical functions. Thus, CD3ζ gene editing is a promising platform for the development of allogeneic off-the-shelf cell therapies using redirected killer lymphocytes.


Assuntos
Complexo CD3 , Células Matadoras Naturais , Receptores de Antígenos Quiméricos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Humanos , Complexo CD3/genética , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/imunologia , Animais , Camundongos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Citotoxicidade Imunológica , Imunoterapia Adotiva/métodos , Edição de Genes/métodos , Sistemas CRISPR-Cas , Camundongos Endogâmicos NOD
2.
bioRxiv ; 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-38116030

RESUMO

Chimeric antigen receptor (CAR)-reprogrammed immune cells hold significant therapeutic potential for oncology, autoimmune diseases, transplant medicine, and infections. All approved CAR-T therapies rely on personalized manufacturing using undirected viral gene transfer, which results in non-physiological regulation of CAR-signaling and limits their accessibility due to logistical challenges, high costs and biosafety requirements. Here, we propose a novel approach utilizing CRISPR-Cas gene editing to redirect T cells and natural killer (NK) cells with CARs. By transferring shorter, truncated CAR-transgenes lacking a main activation domain into the human CD3 ζ (CD247) gene, functional CAR fusion-genes are generated that exploit the endogenous CD3 ζ gene as the CAR's activation domain. Repurposing this T/NK-cell lineage gene facilitated physiological regulation of CAR-expression and reprogramming of various immune cell types, including conventional T cells, TCRγ/δ T cells, regulatory T cells, and NK cells. In T cells, CD3 ζ in-frame fusion eliminated TCR surface expression, reducing the risk of graft-versus-host disease in allogeneic off-the-shelf settings. CD3 ζ-CD19-CAR-T cells exhibited comparable leukemia control to T cell receptor alpha constant ( TRAC )-replaced and lentivirus-transduced CAR-T cells in vivo . Tuning of CD3 ζ-CAR-expression levels significantly improved the in vivo efficacy. Compared to TRAC -edited CAR-T cells, integration of a Her2-CAR into CD3 ζ conveyed similar in vitro tumor lysis but reduced susceptibility to activation-induced cell death and differentiation, presumably due to lower CAR-expression levels. Notably, CD3 ζ gene editing enabled reprogramming of NK cells without impairing their canonical functions. Thus, CD3 ζ gene editing is a promising platform for the development of allogeneic off-the-shelf cell therapies using redirected killer lymphocytes. Key points: Integration of ζ-deficient CARs into CD3 ζ gene allows generation of functional TCR-ablated CAR-T cells for allogeneic off-the-shelf use CD3 ζ-editing platform allows CAR reprogramming of NK cells without affecting their canonical functions.

3.
Front Immunol ; 14: 1086433, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37033919

RESUMO

Introduction: The ubiquitous Epstein-Barr virus (EBV) is an oncogenic herpes virus associated with several human malignancies. EBV is an immune-evasive pathogen that promotes CD8+ T cell exhaustion and dysregulates CD4+ T cell functions. Burkitt lymphoma (BL) is frequently associated with EBV infections. Since BL relapses after conventional therapies are difficult to treat, we evaluated prospective off-the-shelf edited CAR-T cell therapies targeting CD19 or the EBV gp350 cell surface antigen. Methods: We used CRISPR/Cas9 gene editing methods to knock in (KI) the CD19CAR.CD28z or gp350CAR.CD28z into the T cell receptor (TCR) alpha chain (TRAC) locus. Results: Applying upscaled methods with the ExPERT ATx® MaxCyte system, KI efficacy was ~20% of the total ~2 × 108 TCR-knocked-out (KO) generated cells. KOTCRKICAR-T cells were co-cultured in vitro with the gp350+CD19+ BL cell lines Daudi (infected with type 1 EBV) or with Jiyoye (harboring a lytic type 2 EBV). Both types of CAR-T cells showed cytotoxic effects against the BL lines in vitro. CD8+ KICAR-T cells showed higher persistency than CD4+ KICAR-T cells after in vitro co-culture with BL and upregulation of the activation/exhaustion markers PD-1, LAG-3, and TIM-3. Two preclinical in vivo xenograft models were set up with Nod.Rag.Gamma mice injected intravenously (i.v.) with 2 × 105 Daudi/fLuc-GFP or with Jiyoye/fLuc-GFP cells. Compared with the non-treated controls, mice challenged with BL and treated with CD19KICAR-T cells showed delayed lymphoma dissemination with lower EBV DNA load. Notably, for the Jiyoye/fLuc-GFP model, almost exclusively CD4+ CD19KICAR-T cells were detectable at the endpoint analyses in the bone marrow, with increased frequencies of regulatory T cells (Tregs) and TIM-3+CD4+ T cells. Administration of gp350KICAR-T cells to mice after Jiyoye/GFP-fLuc challenge did not inhibit BL growth in vivo but reduced the EBV DNA load in the bone marrow and promoted gp350 antigen escape. CD8+PD-1+LAG-3+ gp350KICAR-T cells were predominant in the bone marrow. Discussion: The two types of KOTCRKICAR-T cells showed different therapeutic effects and in vivo dynamics. These findings reflect the complexities of the immune escape mechanisms of EBV, which may interfere with the CAR-T cell property and potency and should be taken into account for future clinical translation.


Assuntos
Linfoma de Burkitt , Infecções por Vírus Epstein-Barr , Receptores de Antígenos Quiméricos , Humanos , Camundongos , Animais , Linfoma de Burkitt/terapia , Herpesvirus Humano 4 , Receptor Celular 2 do Vírus da Hepatite A , Receptor de Morte Celular Programada 1 , Estudos Prospectivos , Receptores de Antígenos de Linfócitos T alfa-beta
4.
Front Immunol ; 14: 1103695, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36817460

RESUMO

Introduction: Epstein-Barr virus (EBV) is a widely spread pathogen associated with lymphoproliferative diseases, B/ T/ NK cell lymphomas, nasopharyngeal carcinoma (NPC) and gastric carcinoma (GC). EBV lytic reactivations contribute to the genomic instability, inflammation and tumorigenesis of NPC, promoting cancer progression. Patients with NPC refractory to standard therapies show dismal survival. EBV gp350 is an envelope protein detectable in NPC specimens intracellularly and on the cell membrane of malignant cells, and is a potential viral antigen for T cell-directed immunotherapies. The potency of T cells engineered with a chimeric antigen receptor (CAR) targeting gp350 against EBV+ lymphoproliferative disease was previously shown. Methods: Here, we advanced towards preclinical and non-clinical developments of this virus-specific CAR-T cell immunotherapy against NPC. Different gp350CAR designs were inserted into a lentiviral vector (LV) backbone. Results: A construct expressing the scFv 7A1-anti-gp350 incorporating the CD8 transmembrane and CD28.CD3ζ signaling domain (ZT002) was selected. High titer ZT002 (~1x108 TU/ml) was manufactured in HEK 293T/17 suspension cells in serum free media as large-scale production under good manufacturing practices (GMP). A LV multiplicity of infection (MOI) of 1 resulted in high frequencies of functional gp350CAR+ T cells (>70%) at a low (<2) vector copy numbers in the genome. ZT002 was therefore used to establish gp350CAR-T batch run production methods. GMP upscaling and validation of T cell transduction and expansion in several runs resulted in average 3x109 gp350CAR-T cells per batch. >80% CD3+ gp350CAR-T cells bound to purified gp350 protein. In vitro cytotoxicity and cytokine secretion assays (IFN-γ and TNF-α) confirmed the specificity of gp350CAR-T cells against gp350+ NPC, GC and lymphoma cell targets. Immunocompromised B-NDG mice (NOD.CB17-PrkdcscidIl2rgtm1/Bcgen) were challenged s.c. with a EBV+ NPC C666.1 cell line expressing gp350 and then treated with escalating doses of gp350CAR-T cells or with non-transduced T cells. gp350CAR-T cells promoted antitumor responses, bio-distributed in several tissues, infiltrated in tumors and rejected gp350+ tumor cells. Discussion: These results support the use of gp350CAR-T cells generated with ZT002 as an Innovative New Drug to treat patients with solid and liquid EBV-associated malignancies.


Assuntos
Infecções por Vírus Epstein-Barr , Neoplasias Nasofaríngeas , Animais , Camundongos , Herpesvirus Humano 4 , Camundongos Endogâmicos NOD , Carcinoma Nasofaríngeo , Linfócitos T , Receptores de Antígenos Quiméricos/imunologia
5.
Cells ; 13(1)2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-38201224

RESUMO

Antiviral neutralizing antibodies (nAbs) are commonly derived from B cells developed in immunized or infected animals and humans. Fully human antibodies are preferred for clinical use as they are potentially less immunogenic. However, the function of B cells varies depending on their homing pattern and an additional hurdle for antibody discovery in humans is the source of human tissues with an immunological microenvironment. Here, we show an efficient method to pharm human antibodies using immortalized B cells recovered from Nod.Rag.Gamma (NRG) mice reconstituting the human immune system (HIS). Humanized HIS mice were immunized either with autologous engineered dendritic cells expressing the human cytomegalovirus gB envelope protein (HCMV-gB) or with Epstein-Barr virus-like particles (EB-VLP). Human B cells recovered from spleen of HIS mice were efficiently immortalized with EBV in vitro. We show that these immortalized B cells secreted human IgGs with neutralization capacities against prototypic HCMV-gB and EBV-gp350. Taken together, we show that HIS mice can be successfully used for the generation and pharming fully human IgGs. This technology can be further explored to generate antibodies against emerging infections for diagnostic or therapeutic purposes.


Assuntos
Vacinas Anticâncer , Infecções por Vírus Epstein-Barr , Humanos , Animais , Camundongos , Baço , Herpesvirus Humano 4 , Anticorpos Antivirais , Imunoglobulina G , Citomegalovirus
6.
Front Immunol ; 13: 865424, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35784280

RESUMO

T cells modified for expression of Chimeric Antigen Receptors (CARs) were the first gene-modified cell products approved for use in cancer immunotherapy. CAR-T cells engineered with gammaretroviral or lentiviral vectors (RVs/LVs) targeting B-cell lymphomas and leukemias have shown excellent clinical efficacy and no malignant transformation due to insertional mutagenesis to date. Large-scale production of RVs/LVs under good-manufacturing practices for CAR-T cell manufacturing has soared in recent years. However, manufacturing of RVs/LVs remains complex and costly, representing a logistical bottleneck for CAR-T cell production. Emerging gene-editing technologies are fostering a new paradigm in synthetic biology for the engineering and production of CAR-T cells. Firstly, the generation of the modular reagents utilized for gene editing with the CRISPR-Cas systems can be scaled-up with high precision under good manufacturing practices, are interchangeable and can be more sustainable in the long-run through the lower material costs. Secondly, gene editing exploits the precise insertion of CARs into defined genomic loci and allows combinatorial gene knock-ins and knock-outs with exciting and dynamic perspectives for T cell engineering to improve their therapeutic efficacy. Thirdly, allogeneic edited CAR-effector cells could eventually become available as "off-the-shelf" products. This review addresses important points to consider regarding the status quo, pending needs and perspectives for the forthright evolution from the viral towards gene editing developments for CAR-T cells.


Assuntos
Edição de Genes , Receptores de Antígenos Quiméricos , Sistemas CRISPR-Cas , Imunoterapia , Linfócitos T
7.
Mol Ther Methods Clin Dev ; 25: 311-330, 2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35573047

RESUMO

Chimeric antigen receptor (CAR) redirected T cells are potent therapeutic options against hematological malignancies. The current dominant manufacturing approach for CAR T cells depends on retroviral transduction. With the advent of gene editing, insertion of a CD19-CAR into the T cell receptor (TCR) alpha constant (TRAC) locus using adeno-associated viruses for gene transfer was demonstrated, and these CD19-CAR T cells showed improved functionality over their retrovirally transduced counterparts. However, clinical-grade production of viruses is complex and associated with extensive costs. Here, we optimized a virus-free genome-editing method for efficient CAR insertion into the TRAC locus of primary human T cells via nuclease-assisted homology-directed repair (HDR) using CRISPR-Cas and double-stranded template DNA (dsDNA). We evaluated DNA-sensor inhibition and HDR enhancement as two pharmacological interventions to improve cell viability and relative CAR knockin rates, respectively. While the toxicity of transfected dsDNA was not fully prevented, the combination of both interventions significantly increased CAR knockin rates and CAR T cell yield. Resulting TRAC-replaced CD19-CAR T cells showed antigen-specific cytotoxicity and cytokine production in vitro and slowed leukemia progression in a xenograft mouse model. Amplicon sequencing did not reveal significant indel formation at potential off-target sites with or without exposure to DNA-repair-modulating small molecules. With TRAC-integrated CAR+ T cell frequencies exceeding 50%, this study opens new perspectives to exploit pharmacological interventions to improve non-viral gene editing in T cells.

8.
Biomedicines ; 9(8)2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34440166

RESUMO

Humanized mouse models generated with human hematopoietic stem cells (HSCs) and reconstituting the human immune system (HIS-mice) are invigorating preclinical testing of vaccines and immunotherapies. We have recently shown that human engineered dendritic cells boosted bonafide human T and B cell maturation and antigen-specific responses in HIS-mice. Here, we evaluated a cell-free system based on in vivo co-delivery of lentiviral vectors (LVs) for expression of a human leukocyte antigen (HLA-DRA*01/ HLA-DRB1*0401 functional complex, "DR4"), and a LV vaccine expressing human cytokines (GM-CSF and IFN-α) and a human cytomegalovirus gB antigen (HCMV-gB). Humanized NOD/Rag1null/IL2Rγnull (NRG) mice injected by i.v. with LV-DR4/fLuc showed long-lasting (up to 20 weeks) vector distribution and expression in the spleen and liver. In vivo administration of the LV vaccine after LV-DR4/fLuc delivery boosted the cellularity of lymph nodes, promoted maturation of terminal effector CD4+ T cells, and promoted significantly higher development of IgG+ and IgA+ B cells. This modular lentigenic system opens several perspectives for basic human immunology research and preclinical utilization of LVs to deliver HLAs into HIS-mice.

9.
Mol Ther Methods Clin Dev ; 21: 621-641, 2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34095345

RESUMO

Acute myeloid leukemia (AML) patients with minimal residual disease and receiving allogeneic hematopoietic stem cell transplantation (HCT) have poor survival. Adoptive administration of dendritic cells (DCs) presenting the Wilms tumor protein 1 (WT1) leukemia-associated antigen can potentially stimulate de novo T and B cell development to harness the graft-versus-leukemia (GvL) effect after HCT. We established a simple and fast genetic modification of monocytes for simultaneous lentiviral expression of a truncated WT1 antigen (tWT1), granulocyte macrophage-colony-stimulating factor (GM-CSF), and interferon (IFN)-α, promoting their self-differentiation into potent "induced DCs" (iDCtWT1). A tricistronic integrase-defective lentiviral vector produced under good manufacturing practice (GMP)-like conditions was validated. Transduction of CD14+ monocytes isolated from peripheral blood, cord blood, and leukapheresis material effectively induced their self-differentiation. CD34+ cell-transplanted Nod.Rag.Gamma (NRG)- and Nod.Scid.Gamma (NSG) mice expressing human leukocyte antigen (HLA)-A∗0201 (NSG-A2)-immunodeficient mice were immunized with autologous iDCtWT1. Both humanized mouse models showed improved development and maturation of human T and B cells in the absence of adverse effects. Toward clinical use, manufacturing of iDCtWT1 was up scaled and streamlined using the automated CliniMACS Prodigy system. Proof-of-concept clinical-scale runs were feasible, and the 38-h process enabled standardized production and high recovery of a cryopreserved cell product with the expected identity characteristics. These results advocate for clinical trials testing iDCtWT1 to boost GvL and eradicate leukemia.

10.
Clin Cancer Res ; 27(6): 1807-1820, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33376098

RESUMO

PURPOSE: Atypical teratoid/rhabdoid tumors (AT/RT) and central nervous system primitive neuroectodermal tumors (CNS-PNET) are pediatric brain tumors with poor survival and life-long negative side effects. Here, the aim was to characterize the efficacy and safety of the oncolytic adenovirus, Delta-24-RGD, which selectively replicates in and kills tumor cells. EXPERIMENTAL DESIGN: Delta-24-RGD determinants for infection and replication were evaluated in patient expression datasets. Viral replication and cytotoxicity were assessed in vitro in a battery of CNS-PNET and AT/RT cell lines. In vivo, efficacy was determined in different orthotopic mouse models, including early and established tumor models, a disseminated AT/RT lesion model, and immunocompetent humanized mouse models (hCD34+-NSG-SGM3). RESULTS: Delta-24-RGD infected and replicated efficiently in all the cell lines tested. In addition, the virus induced dose-dependent cytotoxicity [IC50 value below 1 plaque-forming unit (PFU)/cell] and the release of immunogenic markers. In vivo, a single intratumoral Delta-24-RGD injection (107 or 108 PFU) significantly increased survival and led to long-term survival in AT/RT and PNET models. Delta-24-RGD hindered the dissemination of AT/RTs and increased survival, leading to 70% of long-term survivors. Of relevance, viral administration to established tumor masses (30 days after engraftment) showed therapeutic benefit. In humanized immunocompetent models, Delta-24-RGD significantly extended the survival of mice bearing AT/RTs or PNETs (ranging from 11 to 27 days) and did not display any toxicity associated with inflammation. Immunophenotyping of Delta-24-RGD-treated tumors revealed increased CD8+ T-cell infiltration. CONCLUSIONS: Delta-24-RGD is a feasible therapeutic option for AT/RTs and CNS-PNETs. This work constitutes the basis for potential translation to the clinical setting.


Assuntos
Neoplasias do Sistema Nervoso Central/terapia , Tumores Neuroectodérmicos Primitivos/terapia , Oligopeptídeos/genética , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/genética , Tumor Rabdoide/terapia , Teratoma/terapia , Animais , Apoptose , Proliferação de Células , Neoplasias do Sistema Nervoso Central/imunologia , Neoplasias do Sistema Nervoso Central/mortalidade , Neoplasias do Sistema Nervoso Central/patologia , Feminino , Humanos , Imunidade Celular , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Tumores Neuroectodérmicos Primitivos/imunologia , Tumores Neuroectodérmicos Primitivos/mortalidade , Tumores Neuroectodérmicos Primitivos/patologia , Tumor Rabdoide/imunologia , Tumor Rabdoide/mortalidade , Tumor Rabdoide/patologia , Teratoma/imunologia , Teratoma/mortalidade , Teratoma/patologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Mol Ther Oncolytics ; 18: 504-524, 2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32953984

RESUMO

Epstein-Barr virus (EBV) is a latent and oncogenic human herpesvirus. Lytic viral protein expression plays an important role in EBV-associated malignancies. The EBV envelope glycoprotein 350 (gp350) is expressed abundantly during EBV lytic reactivation and sporadically on the surface of latently infected cells. Here we tested T cells expressing gp350-specific chimeric antigen receptors (CARs) containing scFvs derived from two novel gp350-binding, highly neutralizing monoclonal antibodies. The scFvs were fused to CD28/CD3ζ signaling domains in a retroviral vector. The produced gp350CAR-T cells specifically recognized and killed gp350+ 293T cells in vitro. The best-performing 7A1-gp350CAR-T cells were cytotoxic against the EBV+ B95-8 cell line, showing selectivity against gp350+ cells. Fully humanized Nod.Rag.Gamma mice transplanted with cord blood CD34+ cells and infected with the EBV/M81/fLuc lytic strain were monitored dynamically for viral spread. Infected mice recapitulated EBV-induced lymphoproliferation, tumor development, and systemic inflammation. We tested adoptive transfer of autologous CD8+gp350CAR-T cells administered protectively or therapeutically. After gp350CAR-T cell therapy, 75% of mice controlled or reduced EBV spread and showed lower frequencies of EBER+ B cell malignant lymphoproliferation, lack of tumor development, and reduced inflammation. In summary, CD8+gp350CAR-T cells showed proof-of-concept preclinical efficacy against impending EBV+ lymphoproliferation and lymphomagenesis.

12.
EMBO Mol Med ; 12(7): e8662, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32578942

RESUMO

Mice xenotransplanted with human cells and/or expressing human gene products (also known as "humanized mice") recapitulate the human evolutionary specialization and diversity of genotypic and phenotypic traits. These models can provide a relevant in vivo context for understanding of human-specific physiology and pathologies. Humanized mice have advanced toward mainstream preclinical models and are now at the forefront of biomedical research. Here, we considered innovations and challenges regarding the reconstitution of human immunity and human tissues, modeling of human infections and cancer, and the use of humanized mice for testing drugs or regenerative therapy products. As the number of publications exploring different facets of humanized mouse models has steadily increased in past years, it is becoming evident that standardized reporting is needed in the field. Therefore, an international community-driven resource called "Minimal Information for Standardization of Humanized Mice" (MISHUM) has been created for the purpose of enhancing rigor and reproducibility of studies in the field. Within MISHUM, we propose comprehensive guidelines for reporting critical information generated using humanized mice.


Assuntos
Modelos Animais de Doenças , Guias como Assunto , Xenoenxertos/normas , Animais , Humanos , Camundongos , Camundongos SCID , Neoplasias , Reprodutibilidade dos Testes
13.
Hum Gene Ther ; 31(7-8): 423-439, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32159399

RESUMO

Human cytomegalovirus (HCMV) reactivations are associated with lower overall survival after transplantations. Adoptive transfer of HCMV-reactive expanded or selected T cells can be applied as a compassionate use, but requires that the human leukocyte antigen-matched donor provides memory cells against HCMV. To overcome this, we developed engineered T cells expressing chimeric antigen receptors (CARs) targeted against the HCMV glycoprotein B (gB) expressed upon viral reactivation. Single-chain variable fragments (scFvs) derived from a human high-affinity gB-specific neutralizing monoclonal antibody (SM5-1) were fused to CARs with 4-1BB (BBL) or CD28 (28S) costimulatory domains and subcloned into retroviral vectors. CD4+ and CD8+ T cells obtained from HCMV-seronegative adult blood or cord blood (CB) transduced with the vectors efficiently expressed the gB-CARs. The specificity and potency of gB-CAR-T cells were demonstrated and compared in vitro using the following: 293T cells expressing gB, and with mesenchymal stem cells infected with a HCMV TB40 strain expressing Gaussia luciferase (HCMV/GLuc). BBL-gB-CAR-T cells generated with adult or CB demonstrated significantly higher in vitro activation and cytotoxicity performance than 28-gB-CAR-T cells. Nod.Rag.Gamma (NRG) mice transplanted with human CB CD34+ cells with long-term human immune reconstitution were used to model HCMV/GLuc infection in vivo by optical imaging analyses. One week after administration, response to BBL-gB-CAR-T cell therapy was observed for 5/8 mice, defined by significant reduction of the bioluminescent signal in relation to untreated controls. Response to therapy was sporadically associated with CAR detection in spleen. Thus, exploring scFv derived from the high-affinity gB-antibody SM5-1 and the 4-1BB signaling domain for CAR design enabled an in vitro high on-target effect and cytotoxicity and encouraging results in vivo. Therefore, gB-CAR-T cells can be a future clinical option for treatment of HCMV reactivations, particularly when memory T cells from the donors are not available.


Assuntos
Infecções por Citomegalovirus/terapia , Imunoterapia Adotiva , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/uso terapêutico , Proteínas do Envelope Viral/imunologia , Animais , Anticorpos Neutralizantes/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/transplante , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/transplante , Sangue Fetal , Células HEK293/metabolismo , Transplante de Células-Tronco Hematopoéticas , Humanos , Camundongos , Camundongos Endogâmicos NOD
14.
Vaccines (Basel) ; 8(1)2020 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-32079250

RESUMO

Human cytomegalovirus (HCMV or HHV-5) is a globally spread pathogen with strictly human tropism that establishes a lifelong persistence. After primary infection, high levels of long-term T and B cell responses are elicited, but the virus is not cleared. HCMV persists mainly in hematopoietic reservoirs, whereby occasional viral reactivation and spread are well controlled in immunocompetent hosts. However, when the immune system cannot control viral infections or reactivations, such as with newborns, patients with immune deficiencies, or immune-compromised patients after transplantations, the lytic outbursts can be severely debilitating or lethal. The development of vaccines for immunization of immune-compromised hosts has been challenging. Several vaccine candidates did not reach the potency expected in clinical trials and were not approved. Before anti-HCMV vaccines can be tested pre-clinically in immune-compromised hosts, reliable in vivo models recapitulating HCMV infection might accelerate their clinical translation. Therefore, immune-deficient mouse strains implanted with human cells and tissues and developing a human immune system (HIS) are being explored to test anti-HCMV vaccines. HIS-mice resemble immune-compromised hosts as they are equipped with antiviral human T and B cells, but the immune reactivity is overall low. Several groups have independently shown that HCMV infections and reactivations can be mirrored in HIS mice. However, these models and the analyses employed varied widely. The path forward is to improve human immune reconstitution and standardize the analyses of adaptive responses so that HIS models can be forthrightly used for testing novel generations of anti-HCMV vaccines in the preclinical pipeline.

15.
Front Oncol ; 10: 614876, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33511078

RESUMO

Post-transplant lymphoproliferative disorder (PTLD) is one of the most common malignancies after solid organ or allogeneic stem cell transplantation. Most PTLD cases are B cell neoplasias carrying Epstein-Barr virus (EBV). A therapeutic approach is reduction of immunosuppression to allow T cells to develop and combat EBV. If this is not effective, approaches include immunotherapies such as monoclonal antibodies targeting CD20 and adoptive T cells. Immune checkpoint inhibition (ICI) to treat EBV+ PTLD was not established clinically due to the risks of organ rejection and graft-versus-host disease. Previously, blockade of the programmed death receptor (PD)-1 by a monoclonal antibody (mAb) during ex vivo infection of mononuclear cells with the EBV/M81+ strain showed lower xenografted lymphoma development in mice. Subsequently, fully humanized mice infected with the EBV/B95-8 strain and treated in vivo with a PD-1 blocking mAb showed aggravation of PTLD and lymphoma development. Here, we evaluated vis-a-vis in fully humanized mice after EBV/B95-8 or EBV/M81 infections the effects of a clinically used PD-1 blocker. Fifteen to 17 weeks after human CD34+ stem cell transplantation, Nod.Rag.Gamma mice were infected with two types of EBV laboratory strains expressing firefly luciferase. Dynamic optical imaging analyses showed systemic EBV infections and this triggered vigorous human CD8+ T cell expansion. Pembrolizumab administered from 2 to 5 weeks post-infections significantly aggravated EBV systemic spread and, for the M81 model, significantly increased the mortality of mice. ICI promoted Ki67+CD30+CD20+EBER+PD-L1+ PTLD with central nervous system (CNS) involvement, mirroring EBV+ CNS PTLD in humans. PD-1 blockade was associated with lower frequencies of circulating T cells in blood and with a profound collapse of CD4+ T cells in lymphatic tissues. Mice treated with pembrolizumab showed an escalation of exhausted T cells expressing TIM-3, and LAG-3 in tissues, higher levels of several human cytokines in plasma and high densities of FoxP3+ regulatory CD4+ and CD8+ T cells in the tumor microenvironment. We conclude that PD-1 blockade during acute EBV infections driving strong CD8+ T cell priming decompensates T cell development towards immunosuppression. Given the variety of preclinical models available, our models conferred a cautionary note indicating that PD-1 blockade aggravated the progression of EBV+ PTLD.

16.
Cancer Immunol Immunother ; 68(11): 1891-1899, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31628525

RESUMO

Acute myeloid leukemia (AML) is the most common acute leukemia in adults and overall survival remains poor. Chemotherapy is the standard of care for intensive induction therapy. Patients who achieve a complete remission require post-remission therapies to prevent relapse. There is no standard of care for patients with minimal residual disease (MRD), and stem cell transplantation is a salvage therapy. Considering the AML genetic heterogeneity and the leukemia immune-suppressive properties, novel cellular immune therapies to effectively harness immunological responses to prevent relapse are needed. We developed a novel modality of immune therapy consisting of monocytes reprogrammed with lentiviral vectors expressing GM-CSF, IFN-α and antigens. Preclinical studies in humanized mice showed that the reprogrammed monocytes self-differentiated into highly viable induced dendritic cells (iDCs) in vivo which migrated effectively to lymph nodes, producing remarkable effects in the de novo regeneration of T and B cell responses. For the first-in-man clinical trial, the patient's monocytes will be transduced with an integrase-defective tricistronic lentiviral vector expressing GM-CSF, IFN-α and a truncated WT1 antigen. For transplanted patients, pre-clinical development of iDCs co-expressing cytomegalovirus antigens is ongoing. To simplify the product chain for a de-centralized supply model, we are currently exploring a closed automated system for a short two-day manufacturing of iDCs. A phase I clinical trial study is in preparation for immune therapy of AML patients with MRD. The proposed cell therapy can fill an important gap in the current and foreseeable future immunotherapies of AML.


Assuntos
Antígenos de Neoplasias/metabolismo , Vetores Genéticos/administração & dosagem , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Imunoterapia , Interferon-alfa/metabolismo , Leucemia Mieloide Aguda/terapia , Monócitos/imunologia , Células Dendríticas/imunologia , Humanos , Lentivirus/genética , Leucemia Mieloide Aguda/imunologia , Leucemia Mieloide Aguda/metabolismo , Medicina de Precisão , Transplante de Células-Tronco
17.
Am J Pathol ; 189(3): 521-539, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30593822

RESUMO

Humanized mice developing functional human T cells endogenously and capable of recognizing cognate human leukocyte antigen-matched tumors are emerging as relevant models for studying human immuno-oncology in vivo. Herein, mice transplanted with human CD34+ stem cells and bearing endogenously developed human T cells for >15 weeks were infected with an oncogenic recombinant Epstein-Barr virus (EBV), encoding enhanced firefly luciferase and green fluorescent protein. EBV-firefly luciferase was detectable 1 week after infection by noninvasive optical imaging in the spleen, from where it spread rapidly and systemically. EBV infection resulted into a pronounced immunologic skewing regarding the expansion of CD8+ T cells in the blood outnumbering the CD4+ T and CD19+ B cells. Furthermore, within 10 weeks of infections, mice developing EBV-induced tumors had significantly higher absolute numbers of CD8+ T cells in lymphatic tissues than mice controlling tumor development. Tumor outgrowth was paralleled by an up-regulation of the programmed cell death receptor 1 on CD8+ and CD4+ T cells, indicative for T-cell dysfunction. Histopathological examinations and in situ hybridizations for EBV in tumors, spleen, liver, and kidney revealed foci of EBV-infected cells in perivascular regions in close association with programmed cell death receptor 1-positive infiltrating lymphocytes. The strong spatiotemporal correlation between tumor development and the T-cell dysfunctional status seen in this viral oncogenesis humanized model replicates observations obtained in the clinical setting.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Infecções por Vírus Epstein-Barr/imunologia , Herpesvirus Humano 4/imunologia , Proteínas de Neoplasias/imunologia , Neoplasias/imunologia , Receptor de Morte Celular Programada 1/imunologia , Animais , Linfócitos T CD4-Positivos/patologia , Linfócitos T CD8-Positivos/patologia , Infecções por Vírus Epstein-Barr/patologia , Humanos , Ativação Linfocitária , Camundongos , Camundongos Mutantes , Neoplasias/patologia , Neoplasias/virologia
18.
Front Immunol ; 9: 2734, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30524448

RESUMO

Human cytomegalovirus (HCMV) latency is typically harmless but reactivation can be largely detrimental to immune compromised hosts. We modeled latency and reactivation using a traceable HCMV laboratory strain expressing the Gaussia luciferase reporter gene (HCMV/GLuc) in order to interrogate the viral modulatory effects on the human adaptive immunity. Humanized mice with long-term (more than 17 weeks) steady human T and B cell immune reconstitutions were infected with HCMV/GLuc and 7 weeks later were further treated with granulocyte-colony stimulating factor (G-CSF) to induce viral reactivations. Whole body bio-luminescence imaging analyses clearly differentiated mice with latent viral infections vs. reactivations. Foci of vigorous viral reactivations were detectable in liver, lymph nodes and salivary glands. The number of viral genome copies in various tissues increased upon reactivations and were detectable in sorted human CD14+, CD169+, and CD34+ cells. Compared with non-infected controls, mice after infections and reactivations showed higher thymopoiesis, systemic expansion of Th, CTL, Treg, and Tfh cells and functional antiviral T cell responses. Latent infections promoted vast development of memory CD4+ T cells while reactivations triggered a shift toward effector T cells expressing PD-1. Further, reactivations prompted a marked development of B cells, maturation of IgG+ plasma cells, and HCMV-specific antibody responses. Multivariate statistical methods were employed using T and B cell immune phenotypic profiles obtained with cells from several tissues of individual mice. The data was used to identify combinations of markers that could predict an HCMV infection vs. reactivation status. In spleen, but not in lymph nodes, higher frequencies of effector CD4+ T cells expressing PD-1 were among the factors most suited to distinguish HCMV reactivations from infections. These results suggest a shift from a T cell dominated immune response during latent infections toward an exhausted T cell phenotype and active humoral immune response upon reactivations. In sum, this novel in vivo humanized model combined with advanced analyses highlights a dynamic system clearly specifying the immunological spatial signatures of HCMV latency and reactivations. These signatures can be merged as predictive biomarker clusters that can be applied in the clinical translation of new therapies for the control of HCMV reactivation.


Assuntos
Linfócitos B/imunologia , Infecções por Citomegalovirus/imunologia , Citomegalovirus/fisiologia , Receptor de Morte Celular Programada 1/imunologia , Linfócitos T/imunologia , Regulação para Cima/imunologia , Ativação Viral/imunologia , Latência Viral/imunologia , Animais , Linfócitos B/patologia , Transplante de Células-Tronco de Sangue do Cordão Umbilical , Infecções por Citomegalovirus/patologia , Sangue Fetal , Células HEK293 , Xenoenxertos , Humanos , Camundongos , Linfócitos T/patologia
19.
EMBO Mol Med ; 10(11)2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30224381

RESUMO

Chimeric antigen receptor (CAR) T cells brought substantial benefit to patients with B-cell malignancies. Notwithstanding, CAR T-cell manufacturing requires complex procedures impeding the broad supply chain. Here, we provide evidence that human CD19-CAR T cells can be generated directly in vivo using the lentiviral vector CD8-LV specifically targeting human CD8+ cells. Administration into mice xenografted with Raji lymphoma cells and human peripheral blood mononuclear cells led to CAR expression solely in CD8+ T cells and efficacious elimination of CD19+ B cells. Further, upon injection of CD8-LV into mice transplanted with human CD34+ cells, induction of CAR T cells and CD19+ B-cell depletion was observed in 7 out of 10 treated animals. Notably, three mice showed elevated levels of human cytokines in plasma. Tissue-invading CAR T cells and complete elimination of the B-lymphocyte-rich zones in spleen were indicative of a cytokine release syndrome. Our data demonstrate the feasibility of in vivo reprogramming of human CD8+ CAR T cells active against CD19+ cells, yet with similar adverse effects currently notorious in the clinical practice.


Assuntos
Antígenos CD19/metabolismo , Linfócitos B/imunologia , Citocinas/metabolismo , Depleção Linfocítica , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/imunologia , Animais , Doença Enxerto-Hospedeiro/imunologia , Células HEK293 , Humanos , Leucócitos Mononucleares/transplante , Camundongos , Síndrome
20.
Front Immunol ; 8: 1709, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29276513

RESUMO

Mice transplanted with human cord blood-derived hematopoietic stem cells (HSCs) became a powerful experimental tool for studying the heterogeneity of human immune reconstitution and immune responses in vivo. Yet, analyses of human T cell maturation in humanized models have been hampered by an overall low immune reactivity and lack of methods to define predictive markers of responsiveness. Long-lived human lentiviral induced dendritic cells expressing the cytomegalovirus pp65 protein (iDCpp65) promoted the development of pp65-specific human CD8+ T cell responses in NOD.Cg-Rag1 tm1Mom -Il2rγ tm1Wj humanized mice through the presentation of immune-dominant antigenic epitopes (signal 1), expression of co-stimulatory molecules (signal 2), and inflammatory cytokines (signal 3). We exploited this validated system to evaluate the effects of mouse sex in the dynamics of T cell homing and maturation status in thymus, blood, bone marrow, spleen, and lymph nodes. Statistical analyses of cell relative frequencies and absolute numbers demonstrated higher CD8+ memory T cell reactivity in spleen and lymph nodes of immunized female mice. In order to understand to which extent the multidimensional relation between organ-specific markers predicted the immunization status, the immunophenotypic profiles of individual mice were used to train an artificial neural network designed to discriminate immunized and non-immunized mice. The highest accuracy of immune reactivity prediction could be obtained from lymph node markers of female mice (77.3%). Principal component analyses further identified clusters of markers best suited to describe the heterogeneity of immunization responses in vivo. A correlation analysis of these markers reflected a tissue-specific impact of immunization. This allowed for an organ-resolved characterization of the immunization status of individual mice based on the identified set of markers. This new modality of multidimensional analyses can be used as a framework for defining minimal but predictive signatures of human immune responses in mice and suggests critical markers to characterize responses to immunization after HSC transplantation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA