Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Nat Med ; 21(5): 518-23, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25915831

RESUMO

Neuropathic pain is a major, intractable clinical problem and its pathophysiology is not well understood. Although recent gene expression profiling studies have enabled the identification of novel targets for pain therapy, classical study designs provide unclear results owing to the differential expression of hundreds of genes across sham and nerve-injured groups, which can be difficult to validate, particularly with respect to the specificity of pain modulation. To circumvent this, we used two outbred lines of rats, which are genetically similar except for being genetically segregated as a result of selective breeding for differences in neuropathic pain hypersensitivity. SerpinA3N, a serine protease inhibitor, was upregulated in the dorsal root ganglia (DRG) after nerve injury, which was further validated for its mouse homolog. Mice lacking SerpinA3N developed more neuropathic mechanical allodynia than wild-type (WT) mice, and exogenous delivery of SerpinA3N attenuated mechanical allodynia in WT mice. T lymphocytes infiltrate the DRG after nerve injury and release leukocyte elastase (LE), which was inhibited by SerpinA3N derived from DRG neurons. Genetic loss of LE or exogenous application of a LE inhibitor (Sivelastat) in WT mice attenuated neuropathic mechanical allodynia. Overall, we reveal a novel and clinically relevant role for a member of the serpin superfamily and a leukocyte elastase and crosstalk between neurons and T cells in the modulation of neuropathic pain.


Assuntos
Proteínas de Fase Aguda/metabolismo , Inibidores Enzimáticos/farmacologia , Elastase de Leucócito/antagonistas & inibidores , Serpinas/metabolismo , Linfócitos T/citologia , Animais , Separação Celular , Dependovirus/genética , Feminino , Gânglios Espinais/metabolismo , Hiperalgesia/fisiopatologia , Hibridização In Situ , Masculino , Camundongos , Camundongos Transgênicos , Neuralgia , Neurônios/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Dor/fisiopatologia , Fenótipo , Reação em Cadeia da Polimerase , Ratos , Regulação para Cima
3.
Nature ; 507(7491): 238-42, 2014 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-24487620

RESUMO

Hunger is a hard-wired motivational state essential for survival. Agouti-related peptide (AgRP)-expressing neurons in the arcuate nucleus (ARC) at the base of the hypothalamus are crucial to the control of hunger. They are activated by caloric deficiency and, when naturally or artificially stimulated, they potently induce intense hunger and subsequent food intake. Consistent with their obligatory role in regulating appetite, genetic ablation or chemogenetic inhibition of AgRP neurons decreases feeding. Excitatory input to AgRP neurons is important in caloric-deficiency-induced activation, and is notable for its remarkable degree of caloric-state-dependent synaptic plasticity. Despite the important role of excitatory input, its source(s) has been unknown. Here, through the use of Cre-recombinase-enabled, cell-specific neuron mapping techniques in mice, we have discovered strong excitatory drive that, unexpectedly, emanates from the hypothalamic paraventricular nucleus, specifically from subsets of neurons expressing thyrotropin-releasing hormone (TRH) and pituitary adenylate cyclase-activating polypeptide (PACAP, also known as ADCYAP1). Chemogenetic stimulation of these afferent neurons in sated mice markedly activates AgRP neurons and induces intense feeding. Conversely, acute inhibition in mice with caloric-deficiency-induced hunger decreases feeding. Discovery of these afferent neurons capable of triggering hunger advances understanding of how this intense motivational state is regulated.


Assuntos
Proteína Relacionada com Agouti/metabolismo , Fome/fisiologia , Vias Neurais/fisiologia , Neurônios/metabolismo , Núcleo Hipotalâmico Paraventricular/fisiologia , Proteína Relacionada com Agouti/deficiência , Animais , Apetite/efeitos dos fármacos , Apetite/fisiologia , Núcleo Arqueado do Hipotálamo/citologia , Núcleo Arqueado do Hipotálamo/metabolismo , Mapeamento Encefálico , Rastreamento de Células , Clozapina/análogos & derivados , Clozapina/farmacologia , Dependovirus/genética , Ingestão de Alimentos/efeitos dos fármacos , Ingestão de Alimentos/fisiologia , Feminino , Privação de Alimentos , Fome/efeitos dos fármacos , Integrases/metabolismo , Masculino , Camundongos , Vias Neurais/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Plasticidade Neuronal/fisiologia , Neurônios/efeitos dos fármacos , Neurônios Aferentes/efeitos dos fármacos , Neurônios Aferentes/metabolismo , Núcleo Hipotalâmico Paraventricular/citologia , Fragmentos de Peptídeos/deficiência , Fragmentos de Peptídeos/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Vírus da Raiva/genética , Resposta de Saciedade/fisiologia , Hormônio Liberador de Tireotropina/metabolismo
4.
Science ; 341(6143): 275-8, 2013 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-23869016

RESUMO

Melanocortin receptor accessory proteins (MRAPs) modulate signaling of melanocortin receptors in vitro. To investigate the physiological role of brain-expressed melanocortin 2 receptor accessory protein 2 (MRAP2), we characterized mice with whole-body and brain-specific targeted deletion of Mrap2, both of which develop severe obesity at a young age. Mrap2 interacts directly with melanocortin 4 receptor (Mc4r), a protein previously implicated in mammalian obesity, and it enhances Mc4r-mediated generation of the second messenger cyclic adenosine monophosphate, suggesting that alterations in Mc4r signaling may be one mechanism underlying the association between Mrap2 disruption and obesity. In a study of humans with severe, early-onset obesity, we found four rare, potentially pathogenic genetic variants in MRAP2, suggesting that the gene may also contribute to body weight regulation in humans.


Assuntos
Peso Corporal/genética , Proteínas de Transporte/genética , Obesidade/genética , Proteínas Modificadoras da Atividade de Receptores/metabolismo , Receptor Tipo 4 de Melanocortina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Adolescente , Animais , Índice de Massa Corporal , Criança , Pré-Escolar , Metabolismo Energético/genética , Feminino , Deleção de Genes , Humanos , Masculino , Camundongos , Camundongos Knockout , Obesidade/metabolismo , Proteínas Modificadoras da Atividade de Receptores/genética , Receptor Tipo 4 de Melanocortina/genética , Adulto Jovem
5.
Nat Med ; 16(3): 286-94, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20154697

RESUMO

Metastasis is responsible for the majority of prostate cancer-related deaths; however, little is known about the molecular mechanisms that underlie this process. Here we identify an oncogene-tumor suppressor cascade that promotes prostate cancer growth and metastasis by coordinately activating the small GTPase Ras and nuclear factor-kappaB (NF-kappaB). Specifically, we show that loss of the Ras GTPase-activating protein (RasGAP) gene DAB2IP induces metastatic prostate cancer in an orthotopic mouse tumor model. Notably, DAB2IP functions as a signaling scaffold that coordinately regulates Ras and NF-kappaB through distinct domains to promote tumor growth and metastasis, respectively. DAB2IP is suppressed in human prostate cancer, where its expression inversely correlates with tumor grade and predicts prognosis. Moreover, we report that epigenetic silencing of DAB2IP is a key mechanism by which the polycomb-group protein histone-lysine N-methyltransferase EZH2 activates Ras and NF-kappaB and triggers metastasis. These studies define the mechanism by which two major pathways can be simultaneously activated in metastatic prostate cancer and establish EZH2 as a driver of metastasis.


Assuntos
Genes Supressores de Tumor/fisiologia , Genes ras/fisiologia , NF-kappa B/farmacologia , Oncogenes/fisiologia , Neoplasias da Próstata/fisiopatologia , Proteínas Ativadoras de ras GTPase/fisiologia , Animais , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/fisiologia , Proteína Potenciadora do Homólogo 2 de Zeste , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos , Invasividade Neoplásica/fisiopatologia , Metástase Neoplásica/fisiopatologia , Transplante de Neoplasias , Complexo Repressor Polycomb 2 , Transdução de Sinais/fisiologia , Fatores de Transcrição/fisiologia , Ativação Transcricional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA