Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 296: 100412, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33581112

RESUMO

The Ca-ATPase isoform 2a (SERCA2a) pumps cytosolic Ca2+ into the sarcoplasmic reticulum (SR) of cardiac myocytes, enabling muscle relaxation during diastole. Abnormally high cytosolic [Ca2+] is a central factor in heart failure, suggesting that augmentation of SERCA2a Ca2+ transport activity could be a promising therapeutic approach. SERCA2a is inhibited by the protein phospholamban (PLB), and a novel transmembrane peptide, dwarf open reading frame (DWORF), is proposed to enhance SR Ca2+ uptake and myocyte contractility by displacing PLB from binding to SERCA2a. However, establishing DWORF's precise physiological role requires further investigation. In the present study, we developed cell-based FRET biosensor systems that can report on protein-protein interactions and structural changes in SERCA2a complexes with PLB and/or DWORF. To test the hypothesis that DWORF competes with PLB to occupy the SERCA2a-binding site, we transiently transfected DWORF into a stable HEK cell line expressing SERCA2a labeled with a FRET donor and PLB labeled with a FRET acceptor. We observed a significant decrease in FRET efficiency, consistent with a decrease in the fraction of SERCA2a bound to PLB. Surprisingly, we also found that DWORF also activates SERCA's enzymatic activity directly in the absence of PLB at subsaturating calcium levels. Using site-directed mutagenesis, we generated DWORF variants that do not activate SERCA, thus identifying residues P15 and W22 as necessary for functional SERCA2a-DWORF interactions. This work advances our mechanistic understanding of the regulation of SERCA2a by small transmembrane proteins and sets the stage for future therapeutic development in heart failure research.


Assuntos
Peptídeos/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Linhagem Celular , Células HEK293 , Insuficiência Cardíaca/metabolismo , Humanos , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Peptídeos/fisiologia , Retículo Sarcoplasmático/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/fisiologia
2.
J Mol Cell Cardiol ; 138: 59-65, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31751570

RESUMO

There is increasing momentum toward the development of gene therapy for heart failure (HF) that is defined by impaired calcium (Ca2+) transport and reduced contractility. We have used FRET (fluorescence resonance energy transfer) between fluorescently-tagged SERCA2a (the cardiac Ca2+ pump) and PLB (phospholamban, ventricular peptide inhibitor of SERCA) to test directly the effectiveness of loss-of-inhibition/gain-of-binding (LOI/GOB) PLB mutants (PLBM) that were engineered to compete with the binding of inhibitory wild-type PLB (PLBWT). Our therapeutic strategy is to relieve PLBWT inhibition of SERCA2a by using the reserve adrenergic capacity mediated by PLB to enhance cardiac contractility. Using a FRET assay, we determined that the combination of a LOI PLB mutation (L31A) and a GOB PLB mutation (I40A) results in a novel engineered LOI/GOB PLBM (L31A/I40A) that effectively competes with PLBWT binding to cardiac SERCA2a in HEK293-6E cells. We demonstrated that co-expression of PLBM enhances SERCA Ca-ATPase activity by increasing enzyme Ca2+ affinity (1/KCa) in PLBWT-inhibited HEK293 cell homogenates. For an initial assessment of PLBM physiological effectiveness, we used human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs) from a healthy individual. In this system, we observed that adeno-associated virus 2 (rAAV2)-driven expression of PLBM enhances the amplitude of SR Ca2+ release and the rate of SR Ca2+ re-uptake. To assess therapeutic potential, we used a hiPSC-CM model of dilated cardiomyopathy (DCM) containing PLB mutation R14del, where we observed that rAAV2-driven expression of PLBM rescues arrhythmic Ca2+ transients and alleviates decreased Ca2+ transport. Thus, we propose that PLBM transgene expression is a promising gene therapy strategy that directly targets the underlying pathophysiology of abnormal Ca2+ transport and thus contractility in underlying systolic heart failure.


Assuntos
Proteínas de Ligação ao Cálcio/genética , Cálcio/metabolismo , Cardiomiopatia Dilatada/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Mutação/genética , Miócitos Cardíacos/patologia , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Ligação Competitiva , Proteínas de Ligação ao Cálcio/metabolismo , Dependovirus/metabolismo , Transferência Ressonante de Energia de Fluorescência , Células HEK293 , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Mutação com Perda de Função/genética , Miócitos Cardíacos/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/antagonistas & inibidores , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética
3.
Mol Cell Biol ; 34(21): 3939-54, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25135477

RESUMO

Fanconi anemia (FA) is a cancer predisposition syndrome characterized by cellular hypersensitivity to DNA interstrand cross-links (ICLs). Within the FA pathway, an upstream core complex monoubiquitinates and recruits the FANCD2 protein to ICLs on chromatin. Ensuing DNA repair involves the Fanconi-associated nuclease 1 (FAN1), which interacts selectively with monoubiquitinated FANCD2 (FANCD2(Ub)) at ICLs. Importantly, FANCD2 has additional independent functions: it binds chromatin and coordinates the restart of aphidicolin (APH)-stalled replication forks in concert with the BLM helicase, while protecting forks from nucleolytic degradation by MRE11. We identified FAN1 as a new crucial replication fork recovery factor. FAN1 joins the BLM-FANCD2 complex following APH-mediated fork stalling in a manner dependent on MRE11 and FANCD2, followed by FAN1 nuclease-mediated fork restart. Surprisingly, APH-induced activation and chromatin recruitment of FAN1 occur independently of the FA core complex or the FAN1 UBZ domain, indicating that the FANCD2(Ub) isoform is dispensable for functional FANCD2-FAN1 cross talk during stalled fork recovery. In the absence of FANCD2, MRE11 exonuclease-promoted access of FAN1 to stalled forks results in severe FAN1-mediated nucleolytic degradation of nascent DNA strands. Thus, FAN1 nuclease activity at stalled replication forks requires tight regulation: too little inhibits fork restart, whereas too much causes fork degradation.


Assuntos
Cromatina/metabolismo , Replicação do DNA , Exodesoxirribonucleases/metabolismo , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/metabolismo , RecQ Helicases/metabolismo , Afidicolina/farmacologia , Domínio Catalítico , Linhagem Celular , Núcleo Celular/metabolismo , Cromatina/efeitos dos fármacos , Replicação do DNA/efeitos dos fármacos , Proteínas de Ligação a DNA/metabolismo , Endodesoxirribonucleases , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/genética , Regulação da Expressão Gênica , Humanos , Proteína Homóloga a MRE11 , Enzimas Multifuncionais , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA