Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
3.
Cell Rep ; 42(7): 112732, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37402168

RESUMO

Pancreatic ductal adenocarcinoma (PDA) orchestrates a suppressive tumor microenvironment that fosters immunotherapy resistance. Tumor-associated macrophages (TAMs) are the principal immune cell infiltrating PDA and are heterogeneous. Here, by employing macrophage fate-mapping approaches and single-cell RNA sequencing, we show that monocytes give rise to most macrophage subsets in PDA. Tumor-specific CD4, but not CD8, T cells promote monocyte differentiation into MHCIIhi anti-tumor macrophages. By conditional major histocompatibility complex (MHC) class II deletion on monocyte-derived macrophages, we show that tumor antigen presentation is required for instructing monocyte differentiation into anti-tumor macrophages, promoting Th1 cells, abrogating Treg cells, and mitigating CD8 T cell exhaustion. Non-redundant IFNγ and CD40 promote MHCIIhi anti-tumor macrophages. Intratumoral monocytes adopt a pro-tumor fate indistinguishable from that of tissue-resident macrophages following loss of macrophage MHC class II or tumor-specific CD4 T cells. Thus, tumor antigen presentation by macrophages to CD4 T cells dictates TAM fate and is a major determinant of macrophage heterogeneity in cancer.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Monócitos , Linfócitos T CD4-Positivos , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/genética , Antígenos de Neoplasias , Antígenos de Histocompatibilidade Classe II , Microambiente Tumoral , Neoplasias Pancreáticas
4.
Cancer Immunol Res ; 11(4): 400, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36897261

RESUMO

Chronic inflammation and immune evasion are hallmarks of cancer. Cancer promotes T-cell differentiation toward an exhausted, or dysfunctional state, which contributes to immune evasion. In this issue, Lutz and colleagues show that the proinflammatory cytokine IL18 correlates with poor patient prognosis and promotes CD8+ T-cell exhaustion in pancreatic cancer by enhancing IL2R signaling. This link between proinflammatory cytokines and T-cell exhaustion elucidates consequences of modulating cytokine signaling during cancer immunotherapy. See related article by Lutz et al. p. 421 (1) .


Assuntos
Interleucina-2 , Neoplasias Pancreáticas , Humanos , Interleucina-2/metabolismo , Interleucina-18/metabolismo , Fator de Transcrição STAT5/metabolismo , Exaustão das Células T , Linfócitos T CD8-Positivos/imunologia , Neoplasias Pancreáticas/metabolismo , Citocinas/metabolismo , Inflamação/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Neoplasias Pancreáticas
5.
Nat Commun ; 14(1): 528, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36726009

RESUMO

T cell receptor (TCR) transgenic mice represent an invaluable tool to study antigen-specific immune responses. In the pre-existing models, a monoclonal TCR is driven by a non-physiologic promoter and randomly integrated into the genome. Here, we create a highly efficient methodology to develop T cell receptor exchange (TRex) mice, in which TCRs, specific to the self/tumor antigen mesothelin (Msln), are integrated into the Trac locus, with concomitant Msln disruption to circumvent T cell tolerance. We show that high affinity TRex thymocytes undergo all sequential stages of maturation, express the exogenous TCR at DN4, require MHC class I for positive selection and undergo negative selection only when both Msln alleles are present. By comparison of TCRs with the same specificity but varying affinity, we show that Trac targeting improves functional sensitivity of a lower affinity TCR and confers resistance to T cell functional loss. By generating P14 TRex mice with the same specificity as the widely used LCMV-P14 TCR transgenic mouse, we demonstrate increased avidity of Trac-targeted TCRs over transgenic TCRs, while preserving physiologic T cell development. Together, our results support that the TRex methodology is an advanced tool to study physiological antigen-specific T cell behavior.


Assuntos
Receptores de Antígenos de Linfócitos T , Timócitos , Camundongos , Animais , Receptores de Antígenos de Linfócitos T/genética , Camundongos Transgênicos , Diferenciação Celular , Autoantígenos
6.
Cancer Immunol Immunother ; 72(6): 1461-1478, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36472588

RESUMO

Pancreatic ductal adenocarcinoma (PDA) is a lethal and metastatic malignancy resistant to therapy. Elucidating how pancreatic tumor-specific T cells differentiate and are maintained in vivo could inform novel therapeutic avenues to promote T cell antitumor activity. Here, we show that the spleen is a critical site harboring tumor-specific CD8 T cells that functionally segregate based on differential Cxcr3 and Klrg1 expression. Cxcr3+ Klrg1- T cells express the memory stem cell marker Tcf1, whereas Cxcr3-Klrg1 + T cells express GzmB consistent with terminal differentiation. We identify a Cxcr3+ Klrg1+ intermediate T cell subpopulation in the spleen that is highly enriched for tumor specificity. However, tumor-specific T cells infiltrating primary tumors progressively downregulate both Cxcr3 and Klrg1 while upregulating exhaustion markers PD-1 and Lag-3. We show that antigen-specific T cell infiltration into PDA is Cxcr3 independent. Further, Cxcr3-deficiency results in enhanced antigen-specific T cell IFNγ production in primary tumors, suggesting that Cxcr3 promotes loss of effector function. Ultimately, however, Cxcr3 was critical for mitigating cancer cell dissemination following immunotherapy with CD40 agonist + anti-PD-L1 or T cell receptor engineered T cell therapy targeting mesothelin. In the absence of Cxcr3, splenic Klrg1 + GzmB + antitumor T cells wain while pancreatic cancer disseminates suggesting a role for these cells in eliminating circulating metastatic tumor cells. Intratumoral myeloid cells are poised to produce Cxcl10, whereas splenic DC subsets produce Cxcl9 following immunotherapy supporting differential roles for these chemokines on T cell differentiation. Together, our study supports that Cxcr3 mitigates tumor cell dissemination by impacting peripheral T cell fate rather than intratumoral T cell trafficking.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Linfócitos T CD8-Positivos/patologia , Diferenciação Celular , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Receptores CXCR3 , Neoplasias Pancreáticas
7.
JCI Insight ; 7(7)2022 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-35393950

RESUMO

We investigate how myeloid subsets differentially shape immunity to pancreatic ductal adenocarcinoma (PDA). We show that tumor antigenicity sculpts myeloid cell composition and functionality. Antigenicity promotes accumulation of type 1 dendritic cells (cDC1), which is driven by Xcr1 signaling, and overcomes macrophage-mediated suppression. The therapeutic activity of adoptive T cell therapy or programmed cell death ligand 1 blockade required cDC1s, which sustained splenic Klrg1+ cytotoxic antitumor T cells and functional intratumoral T cells. KLRG1 and cDC1 genes correlated in human tumors, and PDA patients with high intratumoral KLRG1 survived longer than patients with low intratumoral KLRG1. The immunotherapy CD40 agonist also required host cDC1s for maximal therapeutic benefit. However, CD40 agonist exhibited partial therapeutic benefit in cDC1-deficient hosts and resulted in priming of tumor-specific yet atypical CD8+ T cells with a regulatory phenotype and that failed to participate in tumor control. Monocyte/macrophage depletion using clodronate liposomes abrogated T cell priming yet enhanced the antitumor activity of CD40 agonist in cDC1-deficient hosts via engagement of innate immunity. In sum, our study supports that cDC1s are essential for sustaining effective antitumor T cells and supports differential roles for cDC1s and monocytes/macrophages in instructing T cell fate and immunotherapy response.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Antígenos CD40/metabolismo , Linfócitos T CD8-Positivos , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/terapia , Células Dendríticas , Humanos , Imunoterapia/métodos , Imunoterapia Adotiva/métodos , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/terapia , Neoplasias Pancreáticas
8.
J Immunother Cancer ; 10(2)2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35210305

RESUMO

BACKGROUND: Achieving robust responses with adoptive cell therapy for the treatment of the highly lethal pancreatic ductal adenocarcinoma (PDA) has been elusive. We previously showed that T cells engineered to express a mesothelin-specific T cell receptor (TCRMsln) accumulate in autochthonous PDA, mediate therapeutic antitumor activity, but fail to eradicate tumors in part due to acquisition of a dysfunctional exhausted T cell state. METHODS: Here, we investigated the role of immune checkpoints in mediating TCR engineered T cell dysfunction in a genetically engineered PDA mouse model. The fate of engineered T cells that were either deficient in PD-1, or transferred concurrent with antibodies blocking PD-L1 and/or additional immune checkpoints, were tracked to evaluate persistence, functionality, and antitumor activity at day 8 and day 28 post infusion. We performed RNAseq on engineered T cells isolated from tumors and compared differentially expressed genes to prototypical endogenous exhausted T cells. RESULTS: PD-L1 pathway blockade and/or simultaneous blockade of multiple coinhibitory receptors during adoptive cell therapy was insufficient to prevent engineered T cell dysfunction in autochthonous PDA yet resulted in subclinical activity in the lung, without enhancing anti-tumor immunity. Gene expression analysis revealed that ex vivo TCR engineered T cells markedly differed from in vivo primed endogenous effector T cells which can respond to immune checkpoint inhibitors. Early after transfer, intratumoral TCR engineered T cells acquired a similar molecular program to prototypical exhausted T cells that arise during chronic viral infection, but the molecular programs later diverged. Intratumoral engineered T cells exhibited decreased effector and cell cycle genes and were refractory to TCR signaling. CONCLUSIONS: Abrogation of PD-1 signaling is not sufficient to overcome TCR engineered T cell dysfunction in PDA. Our study suggests that contributions by both the differentiation pathways induced during the ex vivo T cell engineering process and intratumoral suppressive mechanisms render engineered T cells dysfunctional and resistant to rescue by blockade of immune checkpoints.


Assuntos
Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias Pancreáticas/tratamento farmacológico , Linfócitos T/metabolismo , Animais , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Camundongos , Neoplasias Pancreáticas
9.
J Immunol ; 206(6): 1372-1384, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33558374

RESUMO

Pancreatic cancer is a particularly lethal malignancy that resists immunotherapy. In this study, using a preclinical pancreatic cancer murine model, we demonstrate a progressive decrease in IFN-γ and granzyme B and a concomitant increase in Tox and IL-10 in intratumoral tumor-specific T cells. Intratumoral myeloid cells produced elevated IL-27, a cytokine that correlates with poor patient outcome. Abrogating IL-27 signaling significantly decreased intratumoral Tox+ T cells and delayed tumor growth yet was not curative. Agonistic αCD40 decreased intratumoral IL-27-producing myeloid cells, decreased IL-10-producing intratumoral T cells, and promoted intratumoral Klrg1+Gzmb+ short-lived effector T cells. Combination agonistic αCD40+αPD-L1 cured 63% of tumor-bearing animals, promoted rejection following tumor rechallenge, and correlated with a 2-log increase in pancreas-residing tumor-specific T cells. Interfering with Ifngr1 expression in nontumor/host cells abrogated agonistic αCD40+αPD-L1 efficacy. In contrast, interfering with nontumor/host cell Tnfrsf1a led to cure in 100% of animals following agonistic αCD40+αPD-L1 and promoted the formation of circulating central memory T cells rather than long-lived effector T cells. In summary, we identify a mechanistic basis for T cell exhaustion in pancreatic cancer and a feasible clinical strategy to overcome it.


Assuntos
Antineoplásicos Imunológicos/farmacologia , Antígenos CD40/agonistas , Carcinoma Ductal Pancreático/tratamento farmacológico , Células Mieloides/efeitos dos fármacos , Neoplasias Pancreáticas/tratamento farmacológico , Animais , Antineoplásicos Imunológicos/uso terapêutico , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/imunologia , Carcinoma Ductal Pancreático/patologia , Modelos Animais de Doenças , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Interleucinas/metabolismo , Ativação Linfocitária/efeitos dos fármacos , Linfócitos do Interstício Tumoral/imunologia , Masculino , Camundongos , Camundongos Transgênicos , Células Mieloides/imunologia , Células Mieloides/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/patologia , Cultura Primária de Células , Células Tumorais Cultivadas/transplante , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia
11.
Int Immunopharmacol ; 85: 106655, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32521493

RESUMO

Patients with resectable tumor, either in the body or the tail of the pancreas, and cancer patients with a primary tumor adjacent to the splenic vasculature frequently undergo a splenectomy as standard of care during resection. The spleen provides an unutilized source of lymphocytes with potential utility for adoptive cellular therapy (ACT). In this report, spleen and peripheral blood (PB) cells from cancer patients were compared to one another and normal PB by flow cytometry with a focus on CD8+ T-cells, memory phenotype, and their relative expression of checkpoint proteins including program death ligand-1 (PD1). PD1 is both an activation marker for T-cells including antigen (Ag) specific responses, as well as a marker of T-cell exhaustion associated with co-expression of other checkpoint molecules such as lymphocyte activating gene-3 (LAG-3) and T-cell immunoglobulin and mucin domain containing-3 (TIM-3). In summary, the spleen is a rich source of CD8+PD1+ T-cells, with an 8-fold higher frequency compared to the PB. These CD8+ T-cells are predominantly central and transitional memory T-cells with associated effector phenotypes and low expression of TIM-3 and LAG-3 with potential utility for ACT".


Assuntos
Neoplasias/sangue , Neoplasias/imunologia , Baço/citologia , Linfócitos T/imunologia , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Receptor de Morte Celular Programada 1/imunologia , Baço/imunologia , Adulto Jovem
12.
Curr Protoc Immunol ; 129(1): e97, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32432843

RESUMO

T lymphocytes are capable of specific recognition and elimination of target cells. Physiological antigen recognition is mediated by the T cell receptor (TCR), which is an alpha beta heterodimer comprising the products of randomly rearranged V, D, and J genes. The exquisite specificity and functionality of T cells can be leveraged for cancer therapy: specifically, the adoptive transfer of T cells that express tumor-reactive TCRs can induce regression of solid tumors in patients with advanced cancer. However, the isolation and expression of a tumor antigen-specific TCRs is a highly involved process that requires identifying an immunogenic epitope, ensuring human cells are of the correct haplotype, performing a laborious T cell expansion process, and carrying out downstream TCR sequencing and cloning. Recent advances in single-cell sequencing have begun to streamline this process. This protocol synthesizes and expands upon methodologies to generate, isolate, and engineer human T cells with tumor-reactive TCRs for adoptive cell therapy. Though this process is perhaps more arduous than the alternative strategy of using chimeric antigen receptors (CARs) for engineering, the ability to target intracellular proteins using TCRs substantially increases the types of antigens that can be safely targeted. © 2020 Wiley Periodicals LLC. Basic Protocol 1: Generation of human autologous dendritic cells from monocytes Basic Protocol 2: In vitro priming and expansion of human antigen-specific T cells Basic Protocol 3: Cloning of antigen-specific T cell receptors based on single-cell VDJ sequencing data Basic Protocol 4: Validation of T cell receptor expression and functionality in vitro Basic Protocol 5: Rapid expansion of T cell receptor-transduced T cells and human T cell clones.


Assuntos
Linfócitos T CD8-Positivos/metabolismo , Técnicas de Cultura de Células , Imunoterapia Adotiva/métodos , Neoplasias/terapia , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos Quiméricos/genética , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/transplante , Células Cultivadas , Engenharia Genética/métodos , Humanos , Ativação Linfocitária , Neoplasias/imunologia
13.
Front Immunol ; 11: 613815, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33584701

RESUMO

Pancreatic ductal adenocarcinoma (PDA) is a lethal malignancy with an overall 5-year survival rate of 10%. Disease lethality is due to late diagnosis, early metastasis and resistance to therapy, including immunotherapy. PDA creates a robust fibroinflammatory tumor microenvironment that contributes to immunotherapy resistance. While previously considered an immune privileged site, evidence demonstrates that in some cases tumor antigen-specific T cells infiltrate and preferentially accumulate in PDA and are central to tumor cell clearance and long-term remission. Nonetheless, PDA can rapidly evade an adaptive immune response using a myriad of mechanisms. Mounting evidence indicates PDA interferes with T cell differentiation into potent cytolytic effector T cells via deficiencies in naive T cell priming, inducing T cell suppression or promoting T cell exhaustion. Mechanistic research indicates that immunotherapy combinations that change the suppressive tumor microenvironment while engaging antigen-specific T cells is required for treatment of advanced disease. This review focuses on recent advances in understanding mechanisms limiting T cell function and current strategies to overcome immunotherapy resistance in PDA.


Assuntos
Adenocarcinoma/imunologia , Adenocarcinoma/terapia , Carcinoma Ductal Pancreático/imunologia , Carcinoma Ductal Pancreático/terapia , Resistencia a Medicamentos Antineoplásicos/imunologia , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/terapia , Animais , Humanos , Imunoterapia/métodos , Linfócitos T/imunologia , Neoplasias Pancreáticas
14.
Cell Rep ; 28(8): 2140-2155.e6, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31433988

RESUMO

Pancreatic ductal adenocarcinoma (PDA) is a lethal cancer resistant to immunotherapy. We create a PDA mouse model and show that neoantigen expression is required for intratumoral T cell accumulation and response to immune checkpoint blockade. By generating a peptide:MHC tetramer, we identify that PDA induces rapid intratumoral, and progressive systemic, tumor-specific T cell exhaustion. Monotherapy PD-1 or PD-L1 blockade enhances systemic T cell expansion and induces objective responses that require systemic T cells. However, tumor escape variants defective in IFNγ-inducible Tap1 and MHC class I cell surface expression ultimately emerge. Combination PD-1 + PD-L1 blockade synergizes therapeutically by increasing intratumoral KLRG1+Lag3-TNFα+ tumor-specific T cells and generating memory T cells capable of expanding to spontaneous tumor recurrence, thereby prolonging animal survival. Our studies support that PD-1 and PD-L1 are relevant immune checkpoints in PDA and identify a combination for clinical testing in those patients with neoantigen-specific T cells.


Assuntos
Antígenos de Neoplasias/imunologia , Antígeno B7-H1/antagonistas & inibidores , Carcinoma Ductal Pancreático/imunologia , Imunidade Celular , Imunoterapia , Neoplasias Pancreáticas/imunologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Linfócitos T/imunologia , Adenocarcinoma/imunologia , Animais , Antígeno B7-H1/imunologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Antígenos de Histocompatibilidade Classe I/metabolismo , Evasão da Resposta Imune , Epitopos Imunodominantes/imunologia , Interferon gama/metabolismo , Camundongos Endogâmicos C57BL , Fenótipo , Receptor de Morte Celular Programada 1/imunologia , Transdução de Sinais , Neoplasias Pancreáticas
15.
Cancer Immunol Res ; 7(9): 1412-1425, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31337659

RESUMO

Adoptive T-cell therapy using high-affinity T-cell receptors (TCR) to target tumor antigens has potential for improving outcomes in high-grade serous ovarian cancer (HGSOC) patients. Ovarian tumors develop a hostile, multicomponent tumor microenvironment containing suppressive cells, inhibitory ligands, and soluble factors that facilitate evasion of antitumor immune responses. Developing and validating an immunocompetent mouse model of metastatic ovarian cancer that shares antigenic and immunosuppressive qualities of human disease would facilitate establishing effective T-cell therapies. We used deep transcriptome profiling and IHC analysis of human HGSOC tumors and disseminated mouse ID8VEGF tumors to compare immunologic features. We then evaluated the ability of CD8 T cells engineered to express a high-affinity TCR specific for mesothelin, an ovarian cancer antigen, to infiltrate advanced ID8VEGF murine ovarian tumors and control tumor growth. Human CD8 T cells engineered to target mesothelin were also evaluated for ability to kill HLA-A2+ HGSOC lines. IHC and gene-expression profiling revealed striking similarities between tumors of both species, including processing/presentation of a leading candidate target antigen, suppressive immune cell infiltration, and expression of molecules that inhibit T-cell function. Engineered T cells targeting mesothelin infiltrated mouse tumors but became progressively dysfunctional and failed to persist. Treatment with repeated doses of T cells maintained functional activity, significantly prolonging survival of mice harboring late-stage disease at treatment onset. Human CD8 T cells engineered to target mesothelin were tumoricidal for three HGSOC lines. Treatment with engineered T cells may have clinical applicability in patients with advanced-stage HGSOC.


Assuntos
Engenharia Genética , Imunoterapia Adotiva , Neoplasias Ovarianas/mortalidade , Neoplasias Ovarianas/terapia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Animais , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/imunologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular Tumoral , Citotoxicidade Imunológica , Modelos Animais de Doenças , Feminino , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/imunologia , Expressão Gênica , Perfilação da Expressão Gênica , Antígenos HLA-A/genética , Antígenos HLA-A/imunologia , Humanos , Imunofenotipagem , Imunoterapia Adotiva/efeitos adversos , Imunoterapia Adotiva/métodos , Mesotelina , Camundongos , Gradação de Tumores , Estadiamento de Neoplasias , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Prognóstico , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Cancer Immunol Res ; 7(6): 977-989, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31028033

RESUMO

Pancreatic ductal adenocarcinoma (PDA) is a lethal malignancy resistant to therapies, including immune-checkpoint blockade. We investigated two distinct strategies to modulate tumor-associated macrophages (TAM) to enhance cellular therapy targeting mesothelin in an autochthonous PDA mouse model. Administration of an antibody to colony-stimulating factor (anti-Csf1R) depleted Ly6Clow protumorigenic TAMs and significantly enhanced endogenous T-cell intratumoral accumulation. Despite increasing the number of endogenous T cells at the tumor site, as previously reported, TAM depletion had only minimal impact on intratumoral accumulation and persistence of T cells engineered to express a murine mesothelin-specific T-cell receptor (TCR). TAM depletion interfered with the antitumor activity of the infused T cells in PDA, evidenced by reduced tumor cell apoptosis. In contrast, TAM programming with agonistic anti-CD40 increased both Ly6Chigh TAMs and the intratumoral accumulation and longevity of TCR-engineered T cells. Anti-CD40 significantly increased the frequency and number of proliferating and granzyme B+ engineered T cells, and increased tumor cell apoptosis. However, anti-CD40 failed to rescue intratumoral engineered T-cell IFNγ production. Thus, although functional modulation, rather than TAM depletion, enhanced the longevity of engineered T cells and increased tumor cell apoptosis, ultimately, anti-CD40 modulation was insufficient to rescue key effector defects in tumor-reactive T cells. This study highlights critical distinctions between how endogenous T cells that evolve in vivo, and engineered T cells with previously acquired effector activity, respond to modifications of the tumor microenvironment.


Assuntos
Carcinoma Ductal Pancreático/imunologia , Carcinoma Ductal Pancreático/terapia , Macrófagos/imunologia , Macrófagos/metabolismo , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/terapia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Animais , Antígenos de Neoplasias , Biomarcadores Tumorais , Carcinoma Ductal Pancreático/genética , Modelos Animais de Doenças , Matriz Extracelular , Perfilação da Expressão Gênica , Engenharia Genética , Humanos , Imunoterapia , Depleção Linfocítica , Mesotelina , Camundongos , Camundongos Transgênicos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas
17.
Cancer Immunol Res ; 5(11): 978-991, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29066497

RESUMO

Pancreatic ductal adenocarcinoma (PDA) is a lethal malignancy resistant to most therapies, including immune checkpoint blockade. To elucidate mechanisms of immunotherapy resistance, we assessed immune parameters in resected human PDA. We demonstrate significant interpatient variability in T-cell number, localization, and phenotype. CD8+ T cells, Foxp3+ regulatory T cells, and PD-1+ and PD-L1+ cells were preferentially enriched in tertiary lymphoid structures that were found in most tumors compared with stroma and tumor cell nests. Tumors containing more CD8+ T cells also had increased granulocytes, CD163+ (M2 immunosuppressive phenotype) macrophages, and FOXP3+ regulatory T cells. PD-L1 was rare on tumor cells, but was expressed by CD163+ macrophages and an additional stromal cell subset commonly found clustered together adjacent to tumor epithelium. The majority of tumoral CD8+ T cells did not express molecules suggestive of recent T-cell receptor (TCR) signaling. However, 41BB+PD-1+ T cells were still significantly enriched in tumors compared with circulation. Tumoral CD8+PD-1+ T cells commonly expressed additional inhibitory receptors, yet were mostly T-BEThi and EOMESlo, consistent with a less terminally exhausted state. Analysis of gene expression and rearranged TCR genes by deep sequencing suggested most patients have a limited tumor-reactive T-cell response. Multiplex immunohistochemistry revealed variable T-cell infiltration based on abundance and location, which may result in different mechanisms of immunotherapy resistance. Overall, the data support the need for therapies that either induce endogenous, or provide engineered, tumor-specific T-cell responses, and concurrently relieve suppressive mechanisms operative at the tumor site. Cancer Immunol Res; 5(11); 978-91. ©2017 AACR.


Assuntos
Carcinoma Ductal Pancreático/imunologia , Neoplasias Pancreáticas/imunologia , Linfócitos T/imunologia , Antígeno B7-H1/imunologia , Granulócitos/imunologia , Humanos , Contagem de Linfócitos , Monócitos/imunologia , Fenótipo , Receptor de Morte Celular Programada 1/imunologia
18.
Cancer Cell ; 31(3): 311-325, 2017 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-28292435

RESUMO

T cell dysfunction in solid tumors results from multiple mechanisms. Altered signaling pathways in tumor cells help produce a suppressive tumor microenvironment enriched for inhibitory cells, posing a major obstacle for cancer immunity. Metabolic constraints to cell function and survival shape tumor progression and immune cell function. In the face of persistent antigen, chronic T cell receptor signaling drives T lymphocytes to a functionally exhausted state. Here we discuss how the tumor and its microenvironment influences T cell trafficking and function with a focus on melanoma, and pancreatic and ovarian cancer, and discuss how scientific advances may help overcome these hurdles.


Assuntos
Neoplasias/imunologia , Linfócitos T/imunologia , Microambiente Tumoral , Aminoácidos/metabolismo , Citotoxicidade Imunológica , Ácidos Graxos/metabolismo , Genes p53 , Glucose/metabolismo , Humanos , Ácido Láctico/metabolismo , Neoplasias/metabolismo , Neoplasias/terapia , Receptores de Antígenos de Linfócitos T/fisiologia
19.
Cancer Cell ; 29(6): 774-776, 2016 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-27300430

RESUMO

Metastasis and therapy resistance are cardinal features of pancreatic ductal adenocarcinoma, a commonly lethal malignancy. In this issue of Cancer Cell, Steele et al. show that CXCR2 expression and neutrophils are required for metastasis. In mice treated with advanced disease, inhibiting both CXCR2 and PD1 cooperatively but not individually prolongs survival.


Assuntos
Carcinoma Ductal Pancreático/metabolismo , Neoplasias Pancreáticas/metabolismo , Adenocarcinoma , Animais
20.
Cancer Cell ; 28(5): 638-652, 2015 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-26525103

RESUMO

Pancreatic ductal adenocarcinomas (PDAs) erect physical barriers to chemotherapy and induce multiple mechanisms of immune suppression, creating a sanctuary for unimpeded growth. We tested the ability of T cells engineered to express an affinity-enhanced T cell receptor (TCR) against a native antigen to overcome these barriers in a genetically engineered model of autochthonous PDA. Engineered T cells preferentially accumulate in PDA and induce tumor cell death and stromal remodeling. However, tumor-infiltrating T cells become progressively dysfunctional, a limitation successfully overcome by serial T cell infusions that resulted in a near-doubling of survival without overt toxicities. Similarly engineered human T cells lyse PDA cells in vitro, further supporting clinical advancement of this TCR-based strategy for the treatment of PDA.


Assuntos
Antígenos/imunologia , Carcinoma Ductal Pancreático/imunologia , Neoplasias Pancreáticas/imunologia , Linfócitos T/imunologia , Animais , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/terapia , Linhagem Celular Tumoral , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/imunologia , Proteínas Ligadas por GPI/metabolismo , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Immunoblotting , Imunoterapia Adotiva/métodos , Células Jurkat , Estimativa de Kaplan-Meier , Mesotelina , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/terapia , Engenharia de Proteínas/métodos , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Linfócitos T/metabolismo , Linfócitos T/transplante , Transfecção , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA