Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
NPJ Genom Med ; 8(1): 28, 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37770509

RESUMO

Elevated impulsivity is a key component of attention-deficit hyperactivity disorder (ADHD), bipolar disorder and juvenile myoclonic epilepsy (JME). We performed a genome-wide association, colocalization, polygenic risk score, and pathway analysis of impulsivity in JME (n = 381). Results were followed up with functional characterisation using a drosophila model. We identified genome-wide associated SNPs at 8q13.3 (P = 7.5 × 10-9) and 10p11.21 (P = 3.6 × 10-8). The 8q13.3 locus colocalizes with SLCO5A1 expression quantitative trait loci in cerebral cortex (P = 9.5 × 10-3). SLCO5A1 codes for an organic anion transporter and upregulates synapse assembly/organisation genes. Pathway analysis demonstrates 12.7-fold enrichment for presynaptic membrane assembly genes (P = 0.0005) and 14.3-fold enrichment for presynaptic organisation genes (P = 0.0005) including NLGN1 and PTPRD. RNAi knockdown of Oatp30B, the Drosophila polypeptide with the highest homology to SLCO5A1, causes over-reactive startling behaviour (P = 8.7 × 10-3) and increased seizure-like events (P = 6.8 × 10-7). Polygenic risk score for ADHD genetically correlates with impulsivity scores in JME (P = 1.60 × 10-3). SLCO5A1 loss-of-function represents an impulsivity and seizure mechanism. Synaptic assembly genes may inform the aetiology of impulsivity in health and disease.

2.
Genet Epidemiol ; 47(5): 379-393, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37042632

RESUMO

Variation in RNA-Seq data creates modeling challenges for differential gene expression (DE) analysis. Statistical approaches address conventional small sample sizes and implement empirical Bayes or non-parametric tests, but frequently produce different conclusions. Increasing sample sizes enable proposal of alternative DE paradigms. Here we develop RoPE, which uses a data-driven adjustment for variation and a robust profile likelihood ratio DE test. Simulation studies show RoPE can have improved performance over existing tools as sample size increases and has the most reliable control of error rates. Application of RoPE demonstrates that an active Pseudomonas aeruginosa infection downregulates the SLC9A3 Cystic Fibrosis modifier gene.


Assuntos
Perfilação da Expressão Gênica , Modelos Genéticos , Humanos , Funções Verossimilhança , Perfilação da Expressão Gênica/métodos , Teorema de Bayes , Simulação por Computador
3.
Am J Respir Crit Care Med ; 207(10): 1324-1333, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36921087

RESUMO

Rationale: Lung disease is the major cause of morbidity and mortality in persons with cystic fibrosis (pwCF). Variability in CF lung disease has substantial non-CFTR (CF transmembrane conductance regulator) genetic influence. Identification of genetic modifiers has prognostic and therapeutic importance. Objectives: Identify genetic modifier loci and genes/pathways associated with pulmonary disease severity. Methods: Whole-genome sequencing data on 4,248 unique pwCF with pancreatic insufficiency and lung function measures were combined with imputed genotypes from an additional 3,592 patients with pancreatic insufficiency from the United States, Canada, and France. This report describes association of approximately 15.9 million SNPs using the quantitative Kulich normal residual mortality-adjusted (KNoRMA) lung disease phenotype in 7,840 pwCF using premodulator lung function data. Measurements and Main Results: Testing included common and rare SNPs, transcriptome-wide association, gene-level, and pathway analyses. Pathway analyses identified novel associations with genes that have key roles in organ development, and we hypothesize that these genes may relate to dysanapsis and/or variability in lung repair. Results confirmed and extended previous genome-wide association study findings. These whole-genome sequencing data provide finely mapped genetic information to support mechanistic studies. No novel primary associations with common single variants or rare variants were found. Multilocus effects at chr5p13 (SLC9A3/CEP72) and chr11p13 (EHF/APIP) were identified. Variant effect size estimates at associated loci were consistently ordered across the cohorts, indicating possible age or birth cohort effects. Conclusions: This premodulator genomic, transcriptomic, and pathway association study of 7,840 pwCF will facilitate mechanistic and postmodulator genetic studies and the development of novel therapeutics for CF lung disease.


Assuntos
Fibrose Cística , Humanos , Fibrose Cística/genética , Estudo de Associação Genômica Ampla/métodos , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Gravidade do Paciente , Pulmão , Proteínas Associadas aos Microtúbulos/genética
4.
HGG Adv ; 4(1): 100156, 2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36386424

RESUMO

Phasing of heterozygous alleles is critical for interpretation of cis-effects of disease-relevant variation. We sequenced 477 individuals with cystic fibrosis (CF) using linked-read sequencing, which display an average phase block N50 of 4.39 Mb. We use these samples to construct a graph representation of CFTR haplotypes, demonstrating its utility for understanding complex CF alleles. These are visualized in a Web app, CFTbaRcodes, that enables interactive exploration of CFTR haplotypes present in this cohort. We perform fine-mapping and phasing of the chr7q35 trypsinogen locus associated with CF meconium ileus, an intestinal obstruction at birth associated with more severe CF outcomes and pancreatic disease. A 20-kb deletion polymorphism and a PRSS2 missense variant p.Thr8Ile (rs62473563) are shown to independently contribute to meconium ileus risk (p = 0.0028, p = 0.011, respectively) and are PRSS2 pancreas eQTLs (p = 9.5 × 10-7 and p = 1.4 × 10-4, respectively), suggesting the mechanism by which these polymorphisms contribute to CF. The phase information from linked reads provides a putative causal explanation for variation at a CF-relevant locus, which also has implications for the genetic basis of non-CF pancreatitis, to which this locus has been reported to contribute.


Assuntos
Fibrose Cística , Obstrução Intestinal , Íleo Meconial , Recém-Nascido , Humanos , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Íleo Meconial/complicações , Mecônio , Obstrução Intestinal/complicações , Tripsina , Tripsinogênio/genética
5.
NPJ Genom Med ; 7(1): 28, 2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35396391

RESUMO

Over 400 variants in the cystic fibrosis (CF) transmembrane conductance regulator (CFTR) are CF-causing. CFTR modulators target variants to improve lung function, but marked variability in response exists and current therapies do not address all CF-causing variants highlighting unmet needs. Alternative epithelial ion channel/transporters such as SLC26A9 could compensate for CFTR dysfunction, providing therapeutic targets that may benefit all individuals with CF. We investigate the relationship between rs7512462, a marker of SLC26A9 activity, and lung function pre- and post-treatment with CFTR modulators in Canadian and US CF cohorts, in the general population, and in those with chronic obstructive pulmonary disease (COPD). Rs7512462 CC genotype is associated with greater lung function in CF individuals with minimal function variants (for which there are currently no approved therapies; p = 0.008); and for gating (p = 0.033) and p.Phe508del/ p.Phe508del (p = 0.006) genotypes upon treatment with CFTR modulators. In parallel, human nasal epithelia with CC and p.Phe508del/p.Phe508del after Ussing chamber analysis of a combination of approved and experimental modulator treatments show greater CFTR function (p = 0.0022). Beyond CF, rs7512462 is associated with peak expiratory flow in a meta-analysis of the UK Biobank and Spirometa Consortium (p = 2.74 × 10-44) and provides p = 0.0891 in an analysis of COPD case-control status in the UK Biobank defined by spirometry. These findings support SLC26A9 as a therapeutic target to improve lung function for all people with CF and in individuals with other obstructive lung diseases.

6.
J Cyst Fibros ; 21(4): 616-622, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35190293

RESUMO

BACKGROUND: Variation in respiratory response to cystic fibrosis (CF) small molecule therapies is due in part to the contribution of CF lung disease modifier genes. Cultured human bronchial epithelia (HBE) is the gold standard respiratory model for assessing CF therapeutic efficacy but it is hard to access. Cultured human nasal epithelia (HNE) is proposed as a more accessible surrogate model but it is unknown whether the expression profile of the modifier genes are comparable between HNE and HBE which we assess here. METHODS: RNA-sequencing was conducted on paired cultured and fresh HNE and HBE (n = 71 samples) collected from 21 individuals with CF. Genome-wide gene expression was first compared between cultured and fresh cells and then between cultured HNE and HBE based on an equivalence testing procedure we implemented. The co-expression relationships of CFTR and CF lung disease modifier genes were compared between cultured HNE and HBE to determine equivalent interactions. RESULTS: The culturing process had little impact on the expression level of CF lung disease modifier genes. Over 90% of expressed genes showed significant equivalent expression level across cultured HNE and HBE (expression fold-change<2, FDR<0.1), including CFTR and CF lung disease modifier genes. The difference in co-expression relationships among these genes was not significant (p-value=0.99), suggesting their functional interactions are likely to be consistent in the two models. CONCLUSIONS: Cultured HNE recapitulates the expression profile of CF lung disease modifier genes in cultured HBE, suggesting the biological processes involving these genes are likely to be consistent across the two models.


Assuntos
Fibrose Cística , Células Cultivadas , Fibrose Cística/terapia , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Genes Modificadores , Humanos , Mucosa Nasal/metabolismo , Mucosa Respiratória/metabolismo
7.
HGG Adv ; 3(2): 100090, 2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35128485

RESUMO

Cystic fibrosis (CF) is a severe genetic disorder that can cause multiple comorbidities affecting the lungs, the pancreas, the luminal digestive system and beyond. In our previous genome-wide association studies (GWAS), we genotyped approximately 8,000 CF samples using a mixture of different genotyping platforms. More recently, the Cystic Fibrosis Genome Project (CFGP) performed deep (approximately 30×) whole genome sequencing (WGS) of 5,095 samples to better understand the genetic mechanisms underlying clinical heterogeneity among patients with CF. For mixtures of GWAS array and WGS data, genotype imputation has proven effective in increasing effective sample size. Therefore, we first performed imputation for the approximately 8,000 CF samples with GWAS array genotype using the Trans-Omics for Precision Medicine (TOPMed) freeze 8 reference panel. Our results demonstrate that TOPMed can provide high-quality imputation for patients with CF, boosting genomic coverage from approximately 0.3-4.2 million genotyped markers to approximately 11-43 million well-imputed markers, and significantly improving polygenic risk score (PRS) prediction accuracy. Furthermore, we built a CF-specific CFGP reference panel based on WGS data of patients with CF. We demonstrate that despite having approximately 3% the sample size of TOPMed, our CFGP reference panel can still outperform TOPMed when imputing some CF disease-causing variants, likely owing to allele and haplotype differences between patients with CF and general populations. We anticipate our imputed data for 4,656 samples without WGS data will benefit our subsequent genetic association studies, and the CFGP reference panel built from CF WGS samples will benefit other investigators studying CF.

8.
Am J Hum Genet ; 109(2): 253-269, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35065708

RESUMO

Mucus obstruction is a central feature in the cystic fibrosis (CF) airways. A genome-wide association study (GWAS) of lung disease by the CF Gene Modifier Consortium (CFGMC) identified a significant locus containing two mucin genes, MUC20 and MUC4. Expression quantitative trait locus (eQTL) analysis using human nasal epithelia (HNE) from 94 CF-affected Canadians in the CFGMC demonstrated MUC4 eQTLs that mirrored the lung association pattern in the region, suggesting that MUC4 expression may mediate CF lung disease. Complications arose, however, with colocalization testing using existing methods: the locus is complex and the associated SNPs span a 0.2 Mb region with high linkage disequilibrium (LD) and evidence of allelic heterogeneity. We previously developed the Simple Sum (SS), a powerful colocalization test in regions with allelic heterogeneity, but SS assumed eQTLs to be present to achieve type I error control. Here we propose a two-stage SS (SS2) colocalization test that avoids a priori eQTL assumptions, accounts for multiple hypothesis testing and the composite null hypothesis, and enables meta-analysis. We compare SS2 to published approaches through simulation and demonstrate type I error control for all settings with the greatest power in the presence of high LD and allelic heterogeneity. Applying SS2 to the MUC20/MUC4 CF lung disease locus with eQTLs from CF HNE revealed significant colocalization with MUC4 (p = 1.31 × 10-5) rather than with MUC20. The SS2 is a powerful method to inform the responsible gene(s) at a locus and guide future functional studies. SS2 has been implemented in the application LocusFocus.


Assuntos
Sistemas de Transporte de Aminoácidos/genética , Fibrose Cística/genética , Modelos Estatísticos , Mucina-4/genética , Mucinas/genética , Locos de Características Quantitativas , Alelos , Sistemas de Transporte de Aminoácidos/metabolismo , Fibrose Cística/metabolismo , Fibrose Cística/patologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Heterogeneidade Genética , Genoma Humano , Estudo de Associação Genômica Ampla , Humanos , Desequilíbrio de Ligação , Pulmão/metabolismo , Pulmão/patologia , Mucina-4/metabolismo , Mucinas/metabolismo , Mucosa Nasal/metabolismo , Mucosa Nasal/patologia , Polimorfismo de Nucleotídeo Único
9.
Proc Natl Acad Sci U S A ; 118(4)2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33468668

RESUMO

Epistasis refers to the dependence of a mutation on other mutation(s) and the genetic context in general. In the context of human disorders, epistasis complicates the spectrum of disease symptoms and has been proposed as a major contributor to variations in disease outcome. The nonadditive relationship between mutations and the lack of complete understanding of the underlying physiological effects limit our ability to predict phenotypic outcome. Here, we report positive epistasis between intragenic mutations in the cystic fibrosis transmembrane conductance regulator (CFTR)-the gene responsible for cystic fibrosis (CF) pathology. We identified a synonymous single-nucleotide polymorphism (sSNP) that is invariant for the CFTR amino acid sequence but inverts translation speed at the affected codon. This sSNP in cis exhibits positive epistatic effects on some CF disease-causing missense mutations. Individually, both mutations alter CFTR structure and function, yet when combined, they lead to enhanced protein expression and activity. The most robust effect was observed when the sSNP was present in combination with missense mutations that, along with the primary amino acid change, also alter the speed of translation at the affected codon. Functional studies revealed that synergistic alteration in ribosomal velocity is the underlying mechanism; alteration of translation speed likely increases the time window for establishing crucial domain-domain interactions that are otherwise perturbed by each individual mutation.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/genética , Epistasia Genética , Biossíntese de Proteínas , Sequência de Aminoácidos/genética , Códon/genética , Fibrose Cística/patologia , Humanos , Mutação de Sentido Incorreto/genética , Polimorfismo de Nucleotídeo Único/genética , RNA Mensageiro/genética
10.
PLoS One ; 15(11): e0239189, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33253230

RESUMO

Genome wide association studies (GWAS) have identified several genomic loci with candidate modifiers of cystic fibrosis (CF) lung disease, but only a small proportion of the expected genetic contribution is accounted for at these loci. We leveraged expression data from CF cohorts, and Genotype-Tissue Expression (GTEx) reference data sets from multiple human tissues to generate predictive models, which were used to impute transcriptional regulation from genetic variance in our GWAS population. The imputed gene expression was tested for association with CF lung disease severity. By comparing and combining results from alternative approaches, we identified 379 candidate modifier genes. We delved into 52 modifier candidates that showed consensus between approaches, and 28 of them were near known GWAS loci. A number of these genes are implicated in the pathophysiology of CF lung disease (e.g., immunity, infection, inflammation, HLA pathways, glycosylation, and mucociliary clearance) and the CFTR protein biology (e.g., cytoskeleton, microtubule, mitochondrial function, lipid metabolism, endoplasmic reticulum/Golgi, and ubiquitination). Gene set enrichment results are consistent with current knowledge of CF lung disease pathogenesis. HLA Class II genes on chr6, and CEP72, EXOC3, and TPPP near the GWAS peak on chr5 are most consistently associated with CF lung disease severity across the tissues tested. The results help to prioritize genes in the GWAS regions, predict direction of gene expression regulation, and identify new candidate modifiers throughout the genome for potential therapeutic development.


Assuntos
Fibrose Cística/genética , Expressão Gênica/genética , Genes Modificadores/genética , Locos de Características Quantitativas/genética , Estudos de Coortes , Feminino , Regulação da Expressão Gênica/genética , Estudo de Associação Genômica Ampla/métodos , Genômica/métodos , Humanos , Masculino
11.
PLoS Comput Biol ; 16(10): e1008336, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33090994

RESUMO

Genome-wide association studies (GWAS) have primarily identified trait-associated loci in the non-coding genome. Colocalization analyses of SNP associations from GWAS with expression quantitative trait loci (eQTL) evidence enable the generation of hypotheses about responsible mechanism, genes and tissues of origin to guide functional characterization. Here, we present a web-based colocalization browsing and testing tool named LocusFocus (https://locusfocus.research.sickkids.ca). LocusFocus formally tests colocalization using our established Simple Sum method to identify the most relevant genes and tissues for a particular GWAS locus in the presence of high linkage disequilibrium and/or allelic heterogeneity. We demonstrate the utility of LocusFocus, following up on a genome-wide significant locus from a GWAS of meconium ileus (an intestinal obstruction in cystic fibrosis). Using LocusFocus for colocalization analysis with eQTL data suggests variation in ATP12A gene expression in the pancreas rather than intestine is responsible for the GWAS locus. LocusFocus has no operating system dependencies and may be installed in a local web server. LocusFocus is available under the MIT license, with full documentation and source code accessible on GitHub at https://github.com/naim-panjwani/LocusFocus.


Assuntos
Biologia Computacional/métodos , Estudo de Associação Genômica Ampla/métodos , Anotação de Sequência Molecular/métodos , Fibrose Cística/genética , Predisposição Genética para Doença/genética , Humanos , Internet , Desequilíbrio de Ligação/genética , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética , Software
12.
mBio ; 11(2)2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32127447

RESUMO

Human genetics influence a range of pathological and clinical phenotypes in respiratory infections; however, the contributions of disease modifiers remain underappreciated. We exploited the Collaborative Cross (CC) mouse genetic-reference population to map genetic modifiers that affect the severity of Pseudomonas aeruginosa lung infection. Screening for P. aeruginosa respiratory infection in a cohort of 39 CC lines exhibits distinct disease phenotypes ranging from complete resistance to lethal disease. Based on major changes in the survival times, a quantitative-trait locus (QTL) was mapped on murine chromosome 3 to the genomic interval of Mb 110.4 to 120.5. Within this locus, composed of 31 protein-coding genes, two candidate genes, namely, dihydropyrimidine dehydrogenase (Dpyd) and sphingosine-1-phosphate receptor 1 (S1pr1), were identified according to the level of genome-wide significance and disease gene prioritization. Functional validation of the S1pr1 gene by pharmacological targeting in C57BL/6NCrl mice confirmed its relevance in P. aeruginosa pathophysiology. However, in a cohort of Canadian patients with cystic fibrosis (CF) disease, regional genetic-association analysis of the syntenic human locus on chromosome 1 (Mb 97.0 to 105.0) identified two single-nucleotide polymorphisms (rs10875080 and rs11582736) annotated to the Dpyd gene that were significantly associated with age at first P. aeruginosa infection. Thus, there is evidence that both genes might be implicated in this disease. Our results demonstrate that the discovery of murine modifier loci may generate information that is relevant to human disease progression.IMPORTANCE Respiratory infection caused by P. aeruginosa is one of the most critical health burdens worldwide. People affected by P. aeruginosa infection include patients with a weakened immune system, such as those with cystic fibrosis (CF) genetic disease or non-CF bronchiectasis. Disease outcomes range from fatal pneumonia to chronic life-threatening infection and inflammation leading to the progressive deterioration of pulmonary function. The development of these respiratory infections is mediated by multiple causes. However, the genetic factors underlying infection susceptibility are poorly known and difficult to predict. Our study employed novel approaches and improved mouse disease models to identify genetic modifiers that affect the severity of P. aeruginosa lung infection. We identified candidate genes to enhance our understanding of P. aeruginosa infection in humans and provide a proof of concept that could be exploited for other human pathologies mediated by bacterial infection.


Assuntos
Camundongos de Cruzamento Colaborativo/genética , Predisposição Genética para Doença , Pulmão/microbiologia , Infecções por Pseudomonas/genética , Infecções Respiratórias/genética , Infecções Respiratórias/microbiologia , Adolescente , Animais , Linhagem Celular Tumoral , Criança , Cromossomos , Estudos de Coortes , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Adulto Jovem
13.
PLoS One ; 15(1): e0227067, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31931521

RESUMO

BACKGROUND: Cystic fibrosis (CF) is characterized by a progressive decline in lung function due to airway obstruction, infection, and inflammation. CF patients are particularly susceptible to respiratory infection by a variety of pathogens, and the inflammatory response in CF is dysregulated and prolonged. BPI fold containing family A, member 1 (BPIFA1) and BPIFB1 are proteins expressed in the upper airways that may have innate immune activity. We previously identified polymorphisms in the BPIFA1/BPIFB1 region associated with CF lung disease severity. METHODS: We evaluated whether the BPIFA1/BPIFB1 associations with lung disease severity replicated in individuals with CF participating in the International CF Gene Modifier Consortium (n = 6,365). Furthermore, we investigated mechanisms by which the BPIFA1 and BPIFB1 proteins may modify lung disease in CF. RESULTS: The association of the G allele of rs1078761 with reduced lung function was replicated in an independent cohort of CF patients (p = 0.001, n = 2,921) and in a meta-analysis of the full consortium (p = 2.39x10-5, n = 6,365). Furthermore, we found that rs1078761G which is associated with reduced lung function was also associated with reduced BPIFA1, but not BPIFB1, protein levels in saliva from CF patients. Functional assays indicated that BPIFA1 and BPIFB1 do not have an anti-bacterial role against P. aeruginosa but may have an immunomodulatory function in CF airway epithelial cells. Gene expression profiling using RNAseq identified Rho GTPase signaling pathways to be altered in CF airway epithelial cells in response to treatment with recombinant BPIFA1 and BPIFB1 proteins. CONCLUSIONS: BPIFA1 and BPIFB1 have immunomodulatory activity and genetic variation associated with low levels of these proteins may increase CF lung disease severity.


Assuntos
Fibrose Cística/genética , Genes Modificadores , Glicoproteínas/genética , Fosfoproteínas/genética , Pneumonia/genética , Autoantígenos/genética , Autoantígenos/metabolismo , Linhagem Celular , Fibrose Cística/complicações , Fibrose Cística/imunologia , Proteínas de Ligação a Ácido Graxo/genética , Proteínas de Ligação a Ácido Graxo/metabolismo , Glicoproteínas/metabolismo , Humanos , Fosfoproteínas/metabolismo , Pneumonia/etiologia , Pneumonia/imunologia , Polimorfismo de Nucleotídeo Único , Mucosa Respiratória/imunologia
14.
J Clin Endocrinol Metab ; 105(5)2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31697830

RESUMO

CONTEXT: Individuals with cystic fibrosis (CF) develop a distinct form of diabetes characterized by ß-cell dysfunction and islet amyloid accumulation similar to type 2 diabetes (T2D), but generally have normal insulin sensitivity. CF-related diabetes (CFRD) risk is determined by both CFTR, the gene responsible for CF, and other genetic variants. OBJECTIVE: To identify genetic modifiers of CFRD and determine the genetic overlap with other types of diabetes. DESIGN AND PATIENTS: A genome-wide association study was conducted for CFRD onset on 5740 individuals with CF. Weighted polygenic risk scores (PRSs) for type 1 diabetes (T1D), T2D, and diabetes endophenotypes were tested for association with CFRD. RESULTS: Genome-wide significance was obtained for variants at a novel locus (PTMA) and 2 known CFRD genetic modifiers (TCF7L2 and SLC26A9). PTMA and SLC26A9 variants were CF-specific; TCF7L2 variants also associated with T2D. CFRD was strongly associated with PRSs for T2D, insulin secretion, postchallenge glucose concentration, and fasting plasma glucose, and less strongly with T1D PRSs. CFRD was inconsistently associated with PRSs for insulin sensitivity and was not associated with a PRS for islet autoimmunity. A CFRD PRS comprising variants selected from these PRSs (with a false discovery rate < 0.1) and the genome-wide significant variants was associated with CFRD in a replication population. CONCLUSIONS: CFRD and T2D have more etiologic and mechanistic overlap than previously known, aligning along pathways involving ß-cell function rather than insulin sensitivity. Two CFRD risk loci are unrelated to T2D and may affect multiple aspects of CF. An 18-variant PRS stratifies risk of CFRD in an independent population.


Assuntos
Fibrose Cística/complicações , Fibrose Cística/genética , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus/etiologia , Genes Modificadores , Adolescente , Adulto , Criança , Estudos de Coortes , Fibrose Cística/epidemiologia , Diabetes Mellitus/epidemiologia , Diabetes Mellitus/genética , Diabetes Mellitus Tipo 2/epidemiologia , Feminino , França/epidemiologia , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Masculino , Característica Quantitativa Herdável , Fatores de Risco , Adulto Jovem
15.
PLoS Genet ; 15(2): e1008007, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30807572

RESUMO

Cystic Fibrosis (CF) exhibits morbidity in several organs, including progressive lung disease in all patients and intestinal obstruction at birth (meconium ileus) in ~15%. Individuals with the same causal CFTR mutations show variable disease presentation which is partly attributed to modifier genes. With >6,500 participants from the International CF Gene Modifier Consortium, genome-wide association investigation identified a new modifier locus for meconium ileus encompassing ATP12A on chromosome 13 (min p = 3.83x10(-10)); replicated loci encompassing SLC6A14 on chromosome X and SLC26A9 on chromosome 1, (min p<2.2x10(-16), 2.81x10(-11), respectively); and replicated a suggestive locus on chromosome 7 near PRSS1 (min p = 2.55x10(-7)). PRSS1 is exclusively expressed in the exocrine pancreas and was previously associated with non-CF pancreatitis with functional characterization demonstrating impact on PRSS1 gene expression. We thus asked whether the other meconium ileus modifier loci impact gene expression and in which organ. We developed and applied a colocalization framework called the Simple Sum (SS) that integrates regulatory and genetic association information, and also contrasts colocalization evidence across tissues or genes. The associated modifier loci colocalized with expression quantitative trait loci (eQTLs) for ATP12A (p = 3.35x10(-8)), SLC6A14 (p = 1.12x10(-10)) and SLC26A9 (p = 4.48x10(-5)) in the pancreas, even though meconium ileus manifests in the intestine. The meconium ileus susceptibility locus on chromosome X appeared shifted in location from a previously identified locus for CF lung disease severity. Using the SS we integrated the lung disease association locus with eQTLs from nasal epithelia of 63 CF participants and demonstrated evidence of colocalization with airway-specific regulation of SLC6A14 (p = 2.3x10(-4)). Cystic Fibrosis is realizing the promise of personalized medicine, and identification of the contributing organ and understanding of tissue specificity for a gene modifier is essential for the next phase of personalizing therapeutic strategies.


Assuntos
Sistemas de Transporte de Aminoácidos Neutros/genética , Antiporters/genética , Fibrose Cística/genética , Perfilação da Expressão Gênica/métodos , Estudo de Associação Genômica Ampla/métodos , ATPase Trocadora de Hidrogênio-Potássio/genética , Transportadores de Sulfato/genética , Tripsina/genética , Sistemas de Transporte de Aminoácidos , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Antiporters/metabolismo , Fibrose Cística/metabolismo , Feminino , Regulação da Expressão Gênica , ATPase Trocadora de Hidrogênio-Potássio/metabolismo , Humanos , Pulmão/metabolismo , Masculino , Especificidade de Órgãos , Pâncreas Exócrino/metabolismo , Transportadores de Sulfato/metabolismo , Tripsina/metabolismo
16.
J Cyst Fibros ; 18(1): 35-43, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29685812

RESUMO

BACKGROUND: Therapies targeting certain CFTR mutants have been approved, yet variations in clinical response highlight the need for in-vitro and genetic tools that predict patient-specific clinical outcomes. Toward this goal, the CF Canada-Sick Kids Program in Individual CF Therapy (CFIT) is generating a "first of its kind", comprehensive resource containing patient-specific cell cultures and data from 100 CF individuals that will enable modeling of therapeutic responses. METHODS: The CFIT program is generating: 1) nasal cells from drug naïve patients suitable for culture and the study of drug responses in vitro, 2) matched gene expression data obtained by sequencing the RNA from the primary nasal tissue, 3) whole genome sequencing of blood derived DNA from each of the 100 participants, 4) induced pluripotent stem cells (iPSCs) generated from each participant's blood sample, 5) CRISPR-edited isogenic control iPSC lines and 6) prospective clinical data from patients treated with CF modulators. RESULTS: To date, we have recruited 57 of 100 individuals to CFIT, most of whom are homozygous for F508del (to assess in-vitro: in-vivo correlations with respect to ORKAMBI response) or heterozygous for F508del and a minimal function mutation. In addition, several donors are homozygous for rare nonsense and missense mutations. Nasal epithelial cell cultures and matched iPSC lines are available for many of these donors. CONCLUSIONS: This accessible resource will enable development of tools that predict individual outcomes to current and emerging modulators targeting F508del-CFTR and facilitate therapy discovery for rare CF causing mutations.


Assuntos
Aminofenóis/uso terapêutico , Aminopiridinas/uso terapêutico , Benzodioxóis/uso terapêutico , Fibrose Cística/terapia , Terapia Genética/métodos , Medicina de Precisão/métodos , Desenvolvimento de Programas/métodos , Quinolonas/uso terapêutico , Canadá/epidemiologia , Criança , Fibrose Cística/epidemiologia , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Combinação de Medicamentos , Humanos , Incidência , Mutação de Sentido Incorreto , RNA/genética
17.
J Cyst Fibros ; 18(1): 127-134, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29937318

RESUMO

BACKGROUND: Pulmonary disease remains the primary cause of morbidity and mortality for individuals with cystic fibrosis (CF). Variants at a locus on the X-chromosome containing the type 2 angiotensin II receptor gene (AGTR2) were identified by a large GWAS as significantly associating with lung function in CF patients. We hypothesized that manipulating the angiotensin-signaling pathway may yield clinical benefit in CF. METHODS: Genetic subset analysis was conducted on a local CF cohort to extend the GWAS findings. Next, we evaluated pulmonary function in CF mice with a deleted AGTR2 gene, and in those who were given subcutaneous injections of PD123,319, a selective AGTR2 antagonist for 12 weeks beginning at weaning. RESULTS: The genetic subset analysis replicated the initial GWAS identified association, and confirmed the association of this locus with additional lung function parameters. Studies in genetically modified mice established that absence of the AGTR2 gene normalized pulmonary function indices in two independent CF mouse models. Further, we determined that pharmacologic antagonism of AGTR2 improved overall pulmonary function in CF mice to near wild-type levels. CONCLUSIONS: These results identify that reduced AGTR2 signaling is beneficial to CF lung function, and suggest the potential of manipulating the angiotensin-signaling pathway for treatment and/or prevention of CF pulmonary disease. Importantly, the beneficial effects were not CF gene mutation dependent, and were able to be reproduced with pharmacologic antagonism. As there are clinically approved drugs available to target the renin-angiotensin signaling system, these findings may be quickly translated to human clinical trials.


Assuntos
Fibrose Cística/genética , DNA/genética , Pneumopatias/prevenção & controle , Pulmão/fisiopatologia , Mutação , Receptor Tipo 2 de Angiotensina/genética , Bloqueadores do Receptor Tipo 2 de Angiotensina II/farmacologia , Animais , Criança , Fibrose Cística/complicações , Fibrose Cística/metabolismo , Análise Mutacional de DNA , Modelos Animais de Doenças , Feminino , Seguimentos , Fluxo Expiratório Forçado/fisiologia , Genótipo , Humanos , Imidazóis/farmacologia , Pneumopatias/etiologia , Pneumopatias/genética , Masculino , Camundongos , Camundongos Knockout , Piridinas/farmacologia , Receptor Tipo 2 de Angiotensina/efeitos dos fármacos , Receptor Tipo 2 de Angiotensina/metabolismo , Estudos Retrospectivos
18.
Front Pharmacol ; 9: 828, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30140228

RESUMO

Ivacaftor is a drug used to treat cystic fibrosis (CF) patients carrying specific gating CFTR mutations. Interpatient variability in the lung response has been shown to be partly explained by rs7512462 in the Solute Carrier Family 26 Member 9 (SLC26A9) gene. In an independent and larger cohort, we aimed to evaluate whether SLC26A9 variants contribute to the variability of the lung phenotype and if they influence the lung response to ivacaftor. We genotyped the French CF Gene Modifier Study cohort (n = 4,840) to investigate whether SLC26A9 variants were involved in the lung phenotype heterogeneity. Their influence in the response to ivacaftor was tested in the 30 treated patients who met the inclusion criteria: older than 6 years of age, percent-predicted forced expiratory volume measured in 1 s (FEV1pp) in the 3 months before treatment initiation ranging between 40 and 90%. Response to treatment was determined by the change in FEV1pp from baseline, averaged in 15-75 days, and the 1st-year post-treatment. We observed that SLC26A9 variants were not associated with lung function variability in untreated patients and that gain of lung function in patients treated with ivacaftor was similar to clinical trials. We confirmed that rs7512462 was associated with variability in ivacaftor-lung response, with a significant reduction in lung function improvement for patients with the C allele. Other SLC26A9 SNPs also contributed to the ivacaftor-response. Interindividual variability in lung response to ivacaftor is associated with SLC26A9 variants in French CF patients. Pharmacogenomics and personalized medicine will soon be part of CF patient care.

19.
Genet Epidemiol ; 42(7): 590-607, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30120797

RESUMO

Concerns over reproducibility in research has reinvigorated the discourse on P-values as measures of statistical evidence. In a position statement by the American Statistical Association board of directors, they warn of P-value misuse and refer to the availability of alternatives. Despite the common practice of comparing P-values across different hypothesis tests in genetics, it is well-appreciated that P-values must be interpreted alongside the sample size and experimental design used for their computation. Here, we discuss the evidential statistical paradigm (EP), an alternative to Bayesian and Frequentist paradigms, that has been implemented in human genetics studies. Using applications in Cystic Fibrosis genetic association analyses, and describing recent theoretical developments, we review how to measure statistical evidence using the EP in the presence of covariates, model misspecification, and for composite hypotheses. Novel graphical displays are presented, and software for their computation is highlighted. The implications of multiple hypothesis testing for the EP are delineated in the analyses, demonstrating a view more consistent with scientific reasoning; the EP provides a theoretical justification for replication that is a requirement in genetic association studies. As genetic studies grow in size and complexity, a fresh look at measures of statistical evidence that are sensible amid the analysis of big data are required.


Assuntos
Modelos Genéticos , Modelos Estatísticos , Antiporters/genética , Teorema de Bayes , Fibrose Cística/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Funções Verossimilhança , Mecônio/metabolismo , Probabilidade , Reprodutibilidade dos Testes , Tamanho da Amostra , Software , Transportadores de Sulfato
20.
Hum Mol Genet ; 27(R2): R173-R186, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30060192

RESUMO

Despite hope that a cure was imminent when the causative gene was cloned nearly 30 years ago, cystic fibrosis (CF [MIM: 219700]) remains a life-shortening disease affecting more than 70 000 individuals worldwide. However, within the last 6 years the Food and Drug Administration's approval of Ivacaftor, the first drug that corrects the defective cystic fibrosis transmembrane conductance regulator protein [CFTR (MIM: 602421)] in patients with the G551D mutation, marks a watershed in the development of novel therapeutics for this devastating disease. Here we review recent progress in diverse research areas, which all focus on curing CF at the genetic, biochemical or physiological level. In the near future it seems probable that development of mutation-specific therapies will be the focus, since it is unlikely that any one approach will be efficient in correcting the more than 2000 disease-associated variants. We discuss the new drugs and combinations of drugs that either enhance delivery of misfolded CFTR protein to the cell membrane, where it functions as an ion channel, or that activate channel opening. Next we consider approaches to correct the causative genetic lesion at the DNA or RNA level, through repressing stop mutations and nonsense-mediated decay, modulating splice mutations, fixing errors by gene editing or using novel routes to gene replacement. Finally, we explore how modifier genes, loci elsewhere in the genome that modify CF disease severity, may be used to restore a normal phenotype. Progress in all of these areas has been dramatic, generating enthusiasm that CF may soon become a broadly treatable disease.


Assuntos
Fibrose Cística/genética , Fibrose Cística/terapia , Aminofenóis/uso terapêutico , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/fisiologia , Terapia Genética/métodos , Genótipo , Humanos , Mutação , Fenótipo , Quinolonas/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA