Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 159: 114270, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36680812

RESUMO

The RAS-MAPK signaling pathway is one of the most frequently dysregulated pathways in human cancer. Small molecule inhibitors directed against this pathway have clinical activity in patients with various cancer types and can improve patient outcomes. However, the use of these drugs is associated with adverse effects, which can result in dose reduction or treatment interruption. A better molecular understanding of on-target, off-tumor effects may improve toxicity management. In the present study, we aimed to identify early initiating biological changes in the liver upon pharmacological inhibition of the RAS-MAPK signaling pathway. To this end, we tested the effect of MEK inhibitor PD0325901 using mice and human hepatocyte cell lines. Male C57BL/6 mice were treated with either vehicle or PD0325901 for six days, followed by transcriptome analysis of the liver and phenotypic characterization. Pharmacological MEK inhibition altered the expression of 423 genes, of which 78 were upregulated and 345 were downregulated. We identified Shp, a transcriptional repressor, and Cyp7a1, the rate-limiting enzyme in converting cholesterol to bile acids, as the top differentially expressed genes. PD0325901 treatment also affected other genes involved in bile acid regulation, which was associated with changes in the composition of plasma bile acids and composition and total levels of fecal bile acids and elevated predictive biomarkers of early liver toxicity. In conclusion, short-term pharmacological MEK inhibition results in profound changes in bile acid metabolism, which may explain some of the clinical adverse effects of pharmacological inhibition of the RAS-MAPK pathway, including gastrointestinal complications and hepatotoxicity.


Assuntos
Fígado , Receptores Citoplasmáticos e Nucleares , Animais , Humanos , Masculino , Camundongos , Ácidos e Sais Biliares/metabolismo , Colesterol 7-alfa-Hidroxilase/metabolismo , Camundongos Endogâmicos C57BL , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Transdução de Sinais
2.
Proc Natl Acad Sci U S A ; 119(40): e2122382119, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36161959

RESUMO

Fibroblast growth factor 1 (FGF1) is an autocrine growth factor released from adipose tissue during over-nutrition or fasting to feeding transition. While local actions underlie the majority of FGF1's anti-diabetic functions, the molecular mechanisms downstream of adipose FGF receptor signaling are unclear. We investigated the effects of FGF1 on glucose uptake and its underlying mechanism in murine 3T3-L1 adipocytes and in ex vivo adipose explants from mice. FGF1 increased glucose uptake in 3T3-L1 adipocytes and epididymal WAT (eWAT) and inguinal WAT (iWAT). Conversely, glucose uptake was reduced in eWAT and iWAT of FGF1 knockout mice. We show that FGF1 acutely increased adipocyte glucose uptake via activation of the insulin-sensitive glucose transporter GLUT4, involving dynamic crosstalk between the MEK1/2 and Akt signaling proteins. Prolonged exposure to FGF1 stimulated adipocyte glucose uptake by MEK1/2-dependent transcription of the basal glucose transporter GLUT1. We have thus identified an alternative pathway to stimulate glucose uptake in adipocytes, independent from insulin, which could open new avenues for treating patients with type 2 diabetes.


Assuntos
Adipócitos , Fator 1 de Crescimento de Fibroblastos , Glucose , Células 3T3-L1 , Adipócitos/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Fator 1 de Crescimento de Fibroblastos/genética , Fator 1 de Crescimento de Fibroblastos/metabolismo , Glucose/metabolismo , Transportador de Glucose Tipo 1/genética , Transportador de Glucose Tipo 1/metabolismo , Transportador de Glucose Tipo 4/genética , Transportador de Glucose Tipo 4/metabolismo , Insulina/metabolismo , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo
3.
Mol Metab ; 60: 101472, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35304331

RESUMO

OBJECTIVE: GALNT2, encoding polypeptide N-acetylgalactosaminyltransferase 2 (GalNAc-T2), was initially discovered as a regulator of high-density lipoprotein metabolism. GalNAc-T2 is known to exert these effects through post-translational modification, i.e., O-linked glycosylation of secreted proteins with established roles in plasma lipid metabolism. It has recently become clear that loss of GALNT2 in rodents, cattle, nonhuman primates, and humans should be regarded as a novel congenital disorder of glycosylation that affects development and body weight. The role of GALNT2 in metabolic abnormalities other than plasma lipids, including insulin sensitivity and energy homeostasis, is poorly understood. METHODS: GWAS data from the UK Biobank was used to study variation in the GALNT2 locus beyond changes in high-density lipoprotein metabolism. Experimental data were obtained through studies in Galnt2-/- mice and wild-type littermates on both control and high-fat diet. RESULTS: First, we uncovered associations between GALNT2 gene variation, adiposity, and body mass index in humans. In mice, we identify the insulin receptor as a novel substrate of GalNAc-T2 and demonstrate that Galnt2-/- mice exhibit decreased adiposity, alterations in insulin signaling and a shift in energy substrate utilization in the inactive phase. CONCLUSIONS: This study identifies a novel role for GALNT2 in energy homeostasis, and our findings suggest that the local effects of GalNAc-T2 are mediated through posttranslational modification of the insulin receptor.


Assuntos
Lipoproteínas HDL , Receptor de Insulina , Animais , Bovinos , Glicosilação , Homeostase , Camundongos , N-Acetilgalactosaminiltransferases , Polipeptídeo N-Acetilgalactosaminiltransferase
4.
Expert Opin Investig Drugs ; 29(2): 125-133, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31899984

RESUMO

Introduction: Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease worldwide and is strongly associated with obesity and insulin resistance. NAFLD refers to a spectrum of disorders ranging from asymptomatic hepatic steatosis (nonalcoholic fatty liver, NAFL) to nonalcoholic steatohepatitis (NASH), which increases the risk of developing more severe forms of liver disease such as progressive fibrosis, cirrhosis, and liver cancer. Currently, there are no food and drug administration (FDA) approved drugs to treat NASH. Pegbelfermin (BMS-986036) is a PEGylated fibroblast growth factor 21 (FGF21) analogue that is under investigation for the treatment of NASH.Areas covered: We reviewed the (pre)clinical pegbelfermin studies and compared these with other studies that assessed FGF21 and FGF21 analogues in the treatment of NASH.Expert opinion: With no FDA approved treatments available for NASH, there is an urgent need for novel therapies. Pegbelfermin is a systemic treatment with pleiotropic effects on various tissues. Short-term adverse effects are limited, but more research is required to study potential long-term safety issues. In a phase 2a trial, pegbelfermin has shown promising improvements in several NASH related outcomes. However, clinical trials demonstrating long-term benefits on hard outcomes such as liver histology, cirrhosis development, or survival are required for further validation.


Assuntos
Fatores de Crescimento de Fibroblastos/análogos & derivados , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Polietilenoglicóis/uso terapêutico , Animais , Progressão da Doença , Drogas em Investigação/efeitos adversos , Drogas em Investigação/farmacologia , Drogas em Investigação/uso terapêutico , Fatores de Crescimento de Fibroblastos/efeitos adversos , Fatores de Crescimento de Fibroblastos/farmacologia , Fatores de Crescimento de Fibroblastos/uso terapêutico , Humanos , Resistência à Insulina , Hepatopatia Gordurosa não Alcoólica/fisiopatologia , Obesidade/complicações , Polietilenoglicóis/efeitos adversos , Polietilenoglicóis/farmacologia
5.
Artigo em Inglês | MEDLINE | ID: mdl-26834701

RESUMO

The prevalence of obesity is a growing health problem. Obesity is strongly associated with several comorbidities, such as non-alcoholic fatty liver disease, certain cancers, insulin resistance, and type 2 diabetes, which all reduce life expectancy and life quality. Several drugs have been put forward in order to treat these diseases, but many of them have detrimental side effects. The unexpected role of the family of fibroblast growth factors in the regulation of energy metabolism provides new approaches to the treatment of metabolic diseases and offers a valuable tool to gain more insight into metabolic regulation. The known beneficial effects of FGF19 and FGF21 on metabolism, together with recently discovered similar effects of FGF1 suggest that FGFs and their derivatives carry great potential as novel therapeutics to treat metabolic conditions. To facilitate the development of new therapies with improved targeting and minimal side effects, a better understanding of the molecular mechanism of action of FGFs is needed. In this review, we will discuss what is currently known about the physiological roles of FGF signaling in tissues important for metabolic homeostasis. In addition, we will discuss current concepts regarding their pharmacological properties and effector tissues in the context of metabolic disease. Also, the recent progress in the development of FGF variants will be reviewed. Our goal is to provide a comprehensive overview of the current concepts and consensuses regarding FGF signaling in metabolic health and disease and to provide starting points for the development of FGF-based therapies against metabolic conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA