Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 16(4)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38675157

RESUMO

Betulinic acid (BA) is a natural pentacyclic triterpene with diverse biological activities. However, its low water solubility limits its pharmaceutical application. The conversion of pharmaceutically active molecules into ionic liquids (ILs) is a promising strategy to improve their physicochemical properties, stability, and/or potency. Here, we report the synthesis and characterization of 15 novel ILs containing a cation ethyl ester of a polar, non-polar, or charged amino acid [AAOEt] and an anion BA. Except for [ValOEt][BA], we observed preserved or up to 2-fold enhanced cytotoxicity toward hormone-dependent breast cancer cells MCF-7. The estimated IC50 (72 h) values within the series varied between 4.8 and 25.7 µM. We found that the most cytotoxic IL, [LysOEt][BA]2, reduced clonogenic efficiency to 20% compared to that of BA. In addition, we evaluated the effect of a 72 h treatment with BA or [LysOEt][BA]2, the most cytotoxic compound, on the thermodynamic behavior of MCF-7 cells. Based on our data, we suggest that the charged amino acid lysine included in the novel ILs provokes cytotoxicity by a mechanism involving alteration in membrane lipid organization, which could be accompanied by modulation of the visco-elastic properties of the cytoplasm.

2.
Int J Mol Sci ; 22(5)2021 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-33671106

RESUMO

Most anticancer drugs target mitosis as the most crucial and fragile period of rapidly dividing cancer cells. However the limitations of classical chemotherapeutics drive the search for new more effective and selective compounds. For this purpose structural modifications of the previously characterized pyridine aalog (S1) were incorporated aiming to obtain an antimitotic inhibitor of satisfactory and specific anticancer activity. Structure-activity relationship analysis of the compounds against a panel of cancer cell lines allowed to select a compound with a thiophene ring at C5 of a 3,4-dihydropyridine-2(1H)-thione (S22) with promising antiproliferative activity (IC50 equal 1.71 ± 0.58 µM) and selectivity (SI = 21.09) against melanoma A375 cells. Moreover, all three of the most active compounds from the antiproliferative study, namely S1, S19 and S22 showed better selectivity against A375 cells than reference drug, suggesting their possible lower toxicity and wider therapeutic index. As further study revealed, selected compounds inhibited tubulin polymerization via colchicine binding site in dose dependent manner, leading to aberrant mitotic spindle formation, cell cycle arrest and apoptosis. Summarizing, the current study showed that among obtained mitotic-specific inhibitors analogue with thiophene ring showed the highest antiproliferative activity and selectivity against cancer cells.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Pontos de Checagem do Ciclo Celular , Proliferação de Células , Di-Hidropiridinas/química , Melanoma/tratamento farmacológico , Tionas/química , Apoptose , Desenho de Fármacos , Humanos , Melanoma/patologia , Mitose , Estrutura Molecular , Relação Estrutura-Atividade , Moduladores de Tubulina/síntese química , Moduladores de Tubulina/farmacologia , Células Tumorais Cultivadas
3.
Future Med Chem ; 10(20): 2395-2410, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30325216

RESUMO

AIM: The mitotic spindle plays a key role in cell division which makes it an important target in cancer therapy. In the present study the antiproliferative activity of 4-benzyl-5-phenyl-3,4-dihydropyrimidine-2(1H)-thione (1) and its pyridine bioisoster (2) were evaluated and compared with monastrol (MON), the first known cell-permeable small molecule which disrupts bipolar spindle formation by inhibiting Eg5-kinesin activity. RESULTS: Our data revealed that compound 2 showed higher antiproliferative activity than MON against MCF7 and A375 cell lines and comparable reversible cell cycle inhibition in G2/M phase. However, compound 2 produced distinct phenotype from monoastral spindles, and did not affect Eg5 ATPase activity. CONCLUSION: The activity of compound 2 may suggest its new promising anticancer mechanism (different than MON), targeting other component required for spindle bipolarity.


Assuntos
Di-Hidropiridinas/farmacologia , Pirimidinas/farmacologia , Fuso Acromático/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Di-Hidropiridinas/síntese química , Di-Hidropiridinas/química , Desenho de Fármacos , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Humanos , Cinesinas/metabolismo , Pontos de Checagem da Fase M do Ciclo Celular , Microscopia Confocal , Pirimidinas/síntese química , Pirimidinas/química , Pirimidinas/metabolismo , Fuso Acromático/metabolismo , Tionas/metabolismo , Tubulina (Proteína)/metabolismo
4.
Org Biomol Chem ; 12(21): 3427-40, 2014 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-24752551

RESUMO

An easy and novel approach to synthesize 4,5-diaryl functionalized 3,4-dihydropyrimidine-2(1H)-thiones via addition of aryllithiums to 5-aryl substituted pyrimidine-2(1H)-thiones, which could be regarded as a method complementary to the most widely used Biginelli-type synthesis, is described. In the reaction of aryllithiums with N-(Me)Bn substituted pyrimidine-2(1H)-thiones a high degree of regioselectivity of addition, leading to 4-aryl adducts, was achieved. Selected compounds tested for their in vitro anticancer activity against four human cancer cell lines showed the greatest activity against breast cancer (MCF7). 1-Benzyl-4-(3-hydroxyphenyl)-5-phenyl substituted 3,4-dihydropyrimidine-2(1H)-thione (10g) exhibiting 10-fold more potent activity than the best known monastrol (MON) stands as a promising candidate for further scaffold and asymmetric synthesis.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Tionas/síntese química , Tionas/farmacologia , Antineoplásicos/química , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Concentração Inibidora 50 , Espectroscopia de Prótons por Ressonância Magnética , Pirimidinas/química , Pirimidinas/farmacologia , Estereoisomerismo , Tionas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA