Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 14(1)2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38254642

RESUMO

Mineralization-competent cells, including hypertrophic chondrocytes, mature osteoblasts, and osteogenic-differentiated smooth muscle cells secrete media extracellular vesicles (media vesicles) and extracellular vesicles bound to the extracellular matrix (matrix vesicles). Media vesicles are purified directly from the extracellular medium. On the other hand, matrix vesicles are purified after discarding the extracellular medium and subjecting the cells embedded in the extracellular matrix or bone or cartilage tissues to an enzymatic treatment. Several pieces of experimental evidence indicated that matrix vesicles and media vesicles isolated from the same types of mineralizing cells have distinct lipid and protein composition as well as functions. These findings support the view that matrix vesicles and media vesicles released by mineralizing cells have different functions in mineralized tissues due to their location, which is anchored to the extracellular matrix versus free-floating.


Assuntos
Calcinose , Vesículas Extracelulares , Humanos , Matriz Extracelular , Condrócitos , Hipertrofia
2.
Int J Mol Sci ; 23(21)2022 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-36361965

RESUMO

Mineralization-competent cells like osteoblasts and chondrocytes release matrix vesicles (MVs) which accumulate Ca2+ and Pi, creating an optimal environment for apatite formation. The mineralization process requires the involvement of proteins, such as annexins (Anx) and tissue-nonspecific alkaline phosphatase (TNAP), as well as low molecular-weight compounds. Apigenin, a flavonoid compound, has been reported to affect bone metabolism, but there are doubts about its mechanism of action under physiological and pathological conditions. In this report, apigenin potency to modulate annexin A6 (AnxA6)- and TNAP-mediated osteoblast mineralization was explored using three cell lines: human fetal osteoblastic hFOB 1.19, human osteosarcoma Saos-2, and human coronary artery smooth muscle cells HCASMC. We compared the mineralization competence, the morphology and composition of minerals, and the protein distribution in control and apigenin-treated cells and vesicles. The mineralization ability was monitored by AR-S/CPC analysis, and TNAP activity was determined by ELISA assay. Apigenin affected the mineral structure and modulated TNAP activity depending on the concentration. We also observed increased mineralization in Saos-2 cells. Based on TEM-EDX, we found that apigenin influenced the mineral composition. This flavonoid also disturbed the intracellular distribution of AnxA6 and TNAP, especially blocking AnxA6 aggregation and TNAP attachment to the membrane, as examined by FM analysis of cells and TEM-gold analysis of vesicles. In summary, apigenin modulates the mineralization process by regulating AnxA6 and TNAP, as well as through various effects on normal and cancer bone tissues or atherosclerotic soft tissue.


Assuntos
Apigenina , Calcificação Fisiológica , Humanos , Fosfatase Alcalina/efeitos dos fármacos , Fosfatase Alcalina/metabolismo , Anexina A6/efeitos dos fármacos , Anexina A6/metabolismo , Apigenina/farmacologia , Apigenina/metabolismo , Calcificação Fisiológica/efeitos dos fármacos , Calcificação Fisiológica/fisiologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo
3.
Int J Mol Sci ; 23(16)2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-36012211

RESUMO

The biochemical machinery involved in matrix vesicles-mediated bone mineralization involves a specific set of lipids, enzymes, and proteins. Annexins, among their many functions, have been described as responsible for the formation and stabilization of the matrix vesicles' nucleational core. However, the specific role of each member of the annexin family, especially in the presence of type-I collagen, remains to be clarified. To address this issue, in vitro mineralization was carried out using AnxA6 (in solution or associated to the proteoliposomes) in the presence or in the absence of type-I collagen, incubated with either amorphous calcium phosphate (ACP) or a phosphatidylserine-calcium phosphate complex (PS-CPLX) as nucleators. Proteoliposomes were composed of 1,2-dipalmitoylphosphatidylcholine (DPPC), 1,2-dipalmitoylphosphatidylcholine: 1,2-dipalmitoylphosphatidylserine (DPPC:DPPS), and DPPC:Cholesterol:DPPS to mimic the outer and the inner leaflet of the matrix vesicles membrane as well as to investigate the effect of the membrane fluidity. Kinetic parameters of mineralization were calculated from time-dependent turbidity curves of free Annexin A6 (AnxA6) and AnxA6-containing proteoliposomes dispersed in synthetic cartilage lymph. The chemical composition of the minerals formed was investigated by Fourier transform infrared spectroscopy (FTIR). Free AnxA6 and AnxA6-proteoliposomes in the presence of ACP were not able to propagate mineralization; however, poorly crystalline calcium phosphates were formed in the presence of PS-CPLX, supporting the role of annexin-calcium-phosphatidylserine complex in the formation and stabilization of the matrix vesicles' nucleational core. We found that AnxA6 lacks nucleation propagation capacity when incorporated into liposomes in the presence of PS-CPLX and type-I collagen. This suggests that AnxA6 may interact either with phospholipids, forming a nucleational core, or with type-I collagen, albeit less efficiently, to induce the nucleation process.


Assuntos
Anexina A6 , Calcinose , 1,2-Dipalmitoilfosfatidilcolina/química , Anexina A6/metabolismo , Colágeno/metabolismo , Humanos , Fosfatos/metabolismo , Fosfatidilserinas/química , Proteolipídeos
4.
Cardiovasc Res ; 118(1): 84-96, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33070177

RESUMO

Cardiovascular calcification (CVC) is associated with increased morbidity and mortality. It develops in several diseases and locations, such as in the tunica intima in atherosclerosis plaques, in the tunica media in type 2 diabetes and chronic kidney disease, and in aortic valves. In spite of the wide occurrence of CVC and its detrimental effects on cardiovascular diseases (CVD), no treatment is yet available. Most of CVC involve mechanisms similar to those occurring during endochondral and/or intramembranous ossification. Logically, since tissue-nonspecific alkaline phosphatase (TNAP) is the key-enzyme responsible for skeletal/dental mineralization, it is a promising target to limit CVC. Tools have recently been developed to inhibit its activity and preclinical studies conducted in animal models of vascular calcification already provided promising results. Nevertheless, as its name indicates, TNAP is ubiquitous and recent data indicate that it dephosphorylates different substrates in vivo to participate in other important physiological functions besides mineralization. For instance, TNAP is involved in the metabolism of pyridoxal phosphate and the production of neurotransmitters. TNAP has also been described as an anti-inflammatory enzyme able to dephosphorylate adenosine nucleotides and lipopolysaccharide. A better understanding of the full spectrum of TNAP's functions is needed to better characterize the effects of TNAP inhibition in diseases associated with CVC. In this review, after a brief description of the different types of CVC, we describe the newly uncovered additional functions of TNAP and discuss the expected consequences of its systemic inhibition in vivo.


Assuntos
Fosfatase Alcalina/metabolismo , Artérias/metabolismo , Calcificação Vascular/metabolismo , Fosfatase Alcalina/antagonistas & inibidores , Animais , Artérias/efeitos dos fármacos , Artérias/patologia , Artérias/fisiopatologia , Fármacos Cardiovasculares/uso terapêutico , Inibidores Enzimáticos/uso terapêutico , Humanos , Fosforilação , Transdução de Sinais , Especificidade por Substrato , Calcificação Vascular/tratamento farmacológico , Calcificação Vascular/patologia , Calcificação Vascular/fisiopatologia
5.
Int J Mol Sci ; 22(8)2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33924370

RESUMO

The mineralization process is initiated by osteoblasts and chondrocytes during intramembranous and endochondral ossifications, respectively. Both types of cells release matrix vesicles (MVs), which accumulate Pi and Ca2+ and form apatites in their lumen. Tissue non-specific alkaline phosphatase (TNAP), a mineralization marker, is highly enriched in MVs, in which it removes inorganic pyrophosphate (PPi), an inhibitor of apatite formation. MVs then bud from the microvilli of mature osteoblasts or hypertrophic chondrocytes and, thanks to the action of the acto-myosin cortex, become released to the extracellular matrix (ECM), where they bind to collagen fibers and propagate mineral growth. In this report, we compared the mineralization ability of human fetal osteoblastic cell line (hFOB 1.19 cells) with that of osteosarcoma cell line (Saos-2 cells). Both types of cells were able to mineralize in an osteogenic medium containing ascorbic acid and beta glycerophosphate. The composition of calcium and phosphate compounds in cytoplasmic vesicles was distinct from that in extracellular vesicles (mostly MVs) released after collagenase-digestion. Apatites were identified only in MVs derived from Saos-2 cells, while MVs from hFOB 1.19 cells contained amorphous calcium phosphate complexes. In addition, AnxA6 and AnxA2 (nucleators of mineralization) increased mineralization in the sub-membrane region in strongly mineralizing Saos-2 osteosarcoma, where they co-localized with TNAP, whereas in less mineralizing hFOB 1.19 osteoblasts, AnxA6, and AnxA2 co-localizations with TNAP were less visible in the membrane. We also observed a reduction in the level of fetuin-A (FetuA), an inhibitor of mineralization in ECM, following treatment with TNAP and Ca channels inhibitors, especially in osteosarcoma cells. Moreover, a fraction of FetuA was translocated from the cytoplasm towards the plasma membrane during the stimulation of Saos-2 cells, while this displacement was less pronounced in stimulated hFOB 19 cells. In summary, osteosarcoma Saos-2 cells had a better ability to mineralize than osteoblastic hFOB 1.19 cells. The formation of apatites was observed in Saos-2 cells, while only complexes of calcium and phosphate were identified in hFOB 1.19 cells. This was also evidenced by a more pronounced accumulation of AnxA2, AnxA6, FetuA in the plasma membrane, where they were partly co-localized with TNAP in Saos-2 cells, in comparison to hFOB 1.19 cells. This suggests that both activators (AnxA2, AnxA6) and inhibitors (FetuA) of mineralization were recruited to the membrane and co-localized with TNAP to take part in the process of mineralization.


Assuntos
Anexina A2/metabolismo , Anexina A6/metabolismo , Calcificação Fisiológica , Osteoblastos/metabolismo , Osteossarcoma/metabolismo , alfa-2-Glicoproteína-HS/metabolismo , Fosfatase Alcalina/metabolismo , Cálcio/metabolismo , Linhagem Celular Tumoral , Forma Celular , Humanos , Fósforo/metabolismo
6.
Int J Mol Sci ; 20(12)2019 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-31212828

RESUMO

Osteoblasts initiate bone mineralization by releasing matrix vesicles (MVs) into the extracellular matrix (ECM). MVs promote the nucleation process of apatite formation from Ca2+ and Pi in their lumen and bud from the microvilli of osteoblasts during bone development. Tissue non-specific alkaline phosphatase (TNAP) as well as annexins (among them, AnxA6) are abundant proteins in MVs that are engaged in mineralization. In addition, sarcoma proto-oncogene tyrosine-protein (Src) kinase and Rho-associated coiled-coil (ROCK) kinases, which are involved in vesicular transport, may also regulate the mineralization process. Upon stimulation in osteogenic medium containing 50 µg/mL of ascorbic acid (AA) and 7.5 mM of ß-glycerophosphate (ß-GP), human osteosarcoma Saos-2 cells initiated mineralization, as evidenced by Alizarin Red-S (AR-S) staining, TNAP activity, and the partial translocation of AnxA6 from cytoplasm to the plasma membrane. The addition of 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo [3,4-d] pyrimidine (PP2), which is an inhibitor of Src kinase, significantly inhibited the mineralization process when evaluated by the above criteria. In contrast, the addition of (R)-(+)-trans-4-(1-aminoethyl)-N-(4-pyridyl) cyclohexane carboxamide hydrochloride (Y-27632), which is an inhibitor of ROCK kinase, did not affect significantly the mineralization induced in stimulated Saos-2 cells as denoted by AR-S and TNAP activity. In conclusion, mineralization by human osteosarcoma Saos-2 cells seems to be differently regulated by Src and ROCK kinases.


Assuntos
Neoplasias Ósseas/metabolismo , Calcificação Fisiológica , Osteossarcoma/metabolismo , Quinases Associadas a rho/metabolismo , Quinases da Família src/metabolismo , Anexinas/metabolismo , Biomarcadores , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Matriz Extracelular/metabolismo , Imunofluorescência , Humanos , Proto-Oncogene Mas
7.
J Vis Exp ; (136)2018 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-29985356

RESUMO

This video presents the use of transmission electron microscopy with energy dispersive X-ray microanalysis (TEM-EDX) to compare the state of minerals in vesicles released by two human bone cell lines: hFOB 1.19 and Saos-2. These cell lines, after treatment with ascorbic acid (AA) and ß-glycerophosphate (ß-GP), undergo complete osteogenic transdifferentiation from proliferation to mineralization and produce matrix vesicles (MVs) that trigger apatite nucleation in the extracellular matrix (ECM). Based on Alizarin Red-S (AR-S) staining and analysis of the composition of minerals in cell lysates using ultraviolet (UV) light or in vesicles using TEM imaging followed by EDX quantitation and ion mapping, we can infer that osteosarcoma Saos-2 and osteoblastic hFOB 1.19 cells reveal distinct mineralization profiles. Saos-2 cells mineralize more efficiently than hFOB 1.19 cells and produce larger mineral deposits that are not visible under UV light but are similar to hydroxyapatite (HA) in that they have more Ca and F substitutions. The results obtained using these techniques allow us to conclude that the process of mineralization differs depending on the cell type. We propose that, at the cellular level, the origin and properties of vesicles predetermine the type of minerals.


Assuntos
Microanálise por Sonda Eletrônica/métodos , Microscopia Eletrônica de Transmissão/métodos , Minerais/metabolismo , Humanos , Minerais/análise
8.
Biochim Biophys Acta Gen Subj ; 1862(3): 532-546, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29108957

RESUMO

BACKGROUND: Matrix vesicles (MVs) are released from hypertrophic chondrocytes and from mature osteoblasts, the cells responsible for endochondral and membranous ossification. Under pathological conditions, they can also be released from cells of non-skeletal tissues such as vascular smooth muscle cells. MVs are extracellular vesicles of approximately 100-300nm diameter harboring the biochemical machinery needed to induce mineralization. SCOPE OF THE REVIEW: The review comprehensively delineates our current knowledge of MV biology and highlights open questions aiming to stimulate further research. The review is constructed as a series of questions addressing issues of MVs ranging from their biogenesis and functions, to biomimetic models. It critically evaluates experimental data including their isolation and characterization methods, like lipidomics, proteomics, transmission electron microscopy, atomic force microscopy and proteoliposome models mimicking MVs. MAJOR CONCLUSIONS: MVs have a relatively well-defined function as initiators of mineralization. They bind to collagen and their composition reflects the composition of lipid rafts. We call attention to the as yet unclear mechanisms leading to the biogenesis of MVs, and how minerals form and when they are formed. We discuss the prospects of employing upcoming experimental models to deepen our understanding of MV-mediated mineralization and mineralization disorders such as the use of reconstituted lipid vesicles, proteoliposomes and, native sample preparations and high-resolution technologies. GENERAL SIGNIFICANCE: MVs have been extensively investigated owing to their roles in skeletal and ectopic mineralization. MVs serve as a model system for lipid raft structures, and for the mechanisms of genesis and release of extracellular vesicles.


Assuntos
Condrócitos/ultraestrutura , Matriz Extracelular/metabolismo , Vesículas Extracelulares , Osteoblastos/ultraestrutura , Animais , Apatitas/metabolismo , Materiais Biomiméticos , Calcificação Fisiológica/fisiologia , Calcinose/fisiopatologia , Condrócitos/patologia , Colágeno/metabolismo , Vesículas Extracelulares/fisiologia , Humanos , Hipertrofia , Microdomínios da Membrana/fisiologia , Minerais/metabolismo , Modelos Biológicos , Biogênese de Organelas , Proteolipídeos , Manejo de Espécimes , Calcificação Vascular/fisiopatologia
9.
J Inorg Biochem ; 171: 100-107, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28380345

RESUMO

Bone cells control initial steps of mineralization by producing extracellular matrix (ECM) proteins and releasing vesicles that trigger apatite nucleation. Using transmission electron microscopy with energy dispersive X-ray microanalysis (TEM-EDX) we compared the quality of minerals in vesicles produced by two distinct human cell lines: fetal osteoblastic hFOB 1.19 and osteosarcoma Saos-2. Both cell lines, subjected to osteogenic medium with ascorbic acid (AA) and ß-glycerophosphate (ß-GP), undergo the entire osteoblastic differentiation program from proliferation to mineralization, produce the ECM and spontaneously release vesicles. We observed that Saos-2 cells mineralized better than hFOB 1.19, as probed by Alizarin Red-S (AR-S) staining, tissue nonspecific alkaline phosphatase (TNAP) activity and by analyzing the composition of minerals in vesicles. Vesicles released from Saos-2 cells contained and were surrounded by more minerals than vesicles released from hFOB 1.19. In addition, there were more F and Cl substituted apatites in vesicles from hFOB 1.19 than in those from Saos-2 cells as determined by ion ratios. Saos-2 and h-FOB 1.19 cells revealed distinct mineralization profiles, indicating that the process of mineralization may proceed differently in various types of cells. Our findings suggest that TNAP activity is correlated with the relative proportions of mineral-filled vesicles and mineral-surrounded vesicles. The origin of vesicles and their properties predetermine the onset of mineralization at the cellular level.


Assuntos
Ácido Ascórbico/farmacologia , Vesículas Extracelulares/química , Glicerofosfatos/farmacologia , Minerais/química , Osteoblastos/metabolismo , Calcificação Fisiológica , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/ultraestrutura , Humanos , Microscopia Eletrônica de Transmissão , Minerais/metabolismo , Osteoblastos/efeitos dos fármacos , Coloração e Rotulagem
10.
Langmuir ; 32(48): 12923-12933, 2016 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-27934520

RESUMO

Nucleoside diphosphate kinases (NDPKs) are crucial elements in a wide array of cellular physiological or pathophysiological processes such as apoptosis, proliferation, or metastasis formation. Among the NDPK isoenzymes, NDPK-B, a cytoplasmic protein, was reported to be associated with several biological membranes such as plasma or endoplasmic reticulum membranes. Using several membrane models (liposomes, lipid monolayers, and supported lipid bilayers) associated with biophysical approaches, we show that lipid membrane binding occurs in a two-step process: first, initiation by a strong electrostatic adsorption process and followed by shallow penetration of the protein within the membrane. The NDPK-B binding leads to a decrease in membrane fluidity and formation of protein patches. The ability of NDPK-B to form microdomains at the membrane level may be related to protein-protein interactions triggered by its association with anionic phospholipids. Such accumulation of NDPK-B would amplify its effects in functional platform formation and protein recruitment at the membrane.


Assuntos
Membrana Celular/química , Bicamadas Lipídicas/química , Fluidez de Membrana , Humanos , Núcleosídeo-Difosfato Quinase/química , Ligação Proteica
11.
Postepy Biochem ; 62(4): 511-517, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28132453

RESUMO

Vascular calcification accompanies the pathological process of atherosclerotic plaque formation. Artery calcification results from trans-differentiation of vascular smooth muscle cells (VSMCs) into cells resembling mineralization-competent cells such as osteoblasts and chondrocytes. The activity of tissue-nonspecific alkaline phosphatase (TNAP), a GPI-anchored enzyme necessary for physiological mineralization, is induced in VSMCs in response to inflammation. TNAP achieves its mineralizing function being anchored to plasma membrane of mineralizing cells and to the surface of their derived matrix vesicles (MVs), and numerous important reports indicate that membranes play a crucial role in initiating the crystal formation. In this review, we would like to highlight various functions of lipids and proteins associated to membranes at different stages of both physiological mineralization and vascular calcification, with an emphasis on the pathological process of atherosclerotic plaque formation.


Assuntos
Calcinose , Placa Aterosclerótica/metabolismo , Animais , Calcificação Fisiológica , Condrócitos , Humanos , Lipídeos de Membrana , Osteoblastos , Placa Aterosclerótica/fisiopatologia
12.
Biochem Biophys Res Commun ; 412(4): 683-7, 2011 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-21867690

RESUMO

Matrix vesicles (MVs) are cell-derived membranous entities crucial for mineral formation in the extracellular matrix. One of the dominant groups of constitutive proteins present in MVs, recognised as regulators of mineralization in norm and pathology, are annexins. In this report, besides the annexins already described (AnxA2 and AnxA6), we identified AnxA1 and AnxA7, but not AnxA4, to become selectively enriched in MVs of Saos-2 cells upon stimulation for mineralization. Among them, AnxA6 was found to be almost EGTA-non extractable from matrix vesicles. Moreover, our report provides the first evidence of annexin-binding S100 proteins to be present in MVs of mineralizing cells. We observed that S100A10 and S100A6, but not S100A11, were selectively translocated to the MVs of Saos-2 cells upon mineralization. This observation provides the rationale for more detailed studies on the role of annexin-S100 interactions in MV-mediated mineralization.


Assuntos
Anexinas/metabolismo , Matriz Óssea/metabolismo , Calcificação Fisiológica , Calcinose/metabolismo , Vesículas Citoplasmáticas/metabolismo , Proteínas S100/metabolismo , Ácido Ascórbico/farmacologia , Matriz Óssea/ultraestrutura , Fracionamento Celular , Linhagem Celular , Linhagem Celular Tumoral , Vesículas Citoplasmáticas/ultraestrutura , Proteínas do Citoesqueleto/metabolismo , Glicerofosfatos/farmacologia , Humanos , Transporte Proteico
13.
J Proteomics ; 74(7): 1123-34, 2011 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-21515422

RESUMO

Matrix vesicles (MVs), released by budding from apical microvilli of osteoblasts during bone formation and development, are involved in the initiation of mineralization by promoting the formation of hydroxyapatite in their lumen. To gain additional insights into MV biogenesis and functions, MVs and apical microvilli were co-isolated from mineralizing osteoblast-like Saos-2 cells and their proteomes were characterized using LC-ESI-MS/MS and compared. In total, 282 MV and 451 microvillar proteins were identified. Of those, 262 were common in both preparations, confirming that MVs originate from apical microvilli. The occurrence of vesicular trafficking molecules (e.g. Rab proteins) and of the on-site protein synthetic machinery suggests that cell polarization and apical targeting are required for the incorporation of specific lipids and proteins at the site of MV formation. MV release from microvilli may be driven by actions of actin-severing proteins (gelsolin, cofilin 1) and contractile motor proteins (myosins). In addition to the already known proteins involved in MV-mediated mineralization, new MV residents were detected, such as inorganic pyrophosphatase 1, SLC4A7 sodium bicarbonate cotransporter or sphingomyelin phosphodiesterase 3, providing additional insights into MV functions.


Assuntos
Vesículas Citoplasmáticas/fisiologia , Proteínas da Matriz Extracelular/metabolismo , Matriz Extracelular/fisiologia , Microvilosidades/fisiologia , Osteoblastos/fisiologia , Matriz Óssea/fisiologia , Calcificação Fisiológica/fisiologia , Diferenciação Celular , Humanos , Osteogênese/fisiologia , Proteoma/análise , Espectrometria de Massas por Ionização por Electrospray , Células Tumorais Cultivadas
14.
Biochem Biophys Res Commun ; 400(3): 447-51, 2010 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-20804737

RESUMO

Photolysable caged ligands are used to investigate protein function and activity. Here, we investigate the binding properties of caged nucleotides and their photo released products to well established but evolutionary and structurally unrelated nucleotide-binding proteins, rabbit muscle creatine kinase (RMCK) and human annexin A6 (hAnxA6), using saturation transfer difference NMR spectroscopy. We detect the binding of the caged nucleotides and discuss the general implications on interpreting data collected with photolysable caged ligands using different techniques. Strategies to avoid non-specific binding of caged compound to certain proteins are also suggested.


Assuntos
Trifosfato de Adenosina/análogos & derivados , Anexina A6/metabolismo , Creatina Quinase Forma MM/metabolismo , Guanosina Trifosfato/análogos & derivados , Ressonância Magnética Nuclear Biomolecular/métodos , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Animais , Anexina A6/química , Creatina Quinase Forma MM/química , Guanosina Trifosfato/química , Guanosina Trifosfato/metabolismo , Humanos , Ligantes , Ligação Proteica , Coelhos
15.
J Cell Biochem ; 106(1): 127-38, 2009 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-19009559

RESUMO

In bone, mineralization is tightly regulated by osteoblasts and hypertrophic chondrocytes which release matrix vesicles (MVs) and control extracellular ionic conditions and matrix composition. MVs are the initial sites of hydroxyapatite (HA) mineral formation. Despite growing knowledge about their morphology and function, their biogenesis is not well understood. The purpose of this work was to determine the source of MVs in osteoblast lineage, Saos-2 cells, and to check whether MVs originated from microvilli. Microvilli were isolated from the apical plasma membrane of Saos-2 cells. Their morphology, structure, and function were compared with those of MVs. The role of actin network in MV release was investigated by using microfilament perturbing drugs. When examined by electron microscopy MVs and microvillar vesicles were found to exhibit similar morphology with trilaminar membranes and diameters in the same range. Both types of vesicles were able to induce HA formation. Their electrophoretic profiles displayed analogous enrichment in alkaline phosphatase, Na(+)/K(+) ATPase, and annexins A2 and A6. MVs and microvillar vesicles exhibited almost the same lipid composition with a higher content of cholesterol, sphingomyelin, and phosphatidylserine as compared to plasma membrane. Finally, cytochalasin D, which inhibits actin polymerization, was found to stimulate release of MVs. Our findings were consistent with the hypothesis that MVs originated from cell microvilli and that actin filament disassembly was involved in their biogenesis.


Assuntos
Matriz Extracelular/metabolismo , Osteoblastos/metabolismo , Calcificação Fisiológica , Linhagem Celular Tumoral , Linhagem da Célula , Condrócitos/citologia , Condrócitos/metabolismo , Humanos , Microscopia Eletrônica , Microvilosidades/metabolismo , Osteossarcoma/metabolismo
16.
J Immunol ; 169(12): 6787-94, 2002 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-12471110

RESUMO

Recent data indicate that phagocytosis mediated by FcgammaRs is controlled by the Src and Syk families of protein tyrosine kinases. In this study, we demonstrate a sequential involvement of Lyn and Syk in the phagocytosis of IgG-coated particles. The particles isolated at the stage of their binding to FcgammaRs (4 degrees C) were accompanied by high amounts of Lyn, in addition to the signaling gamma-chain of FcgammaRs. Simultaneously, the particle binding induced rapid tyrosine phosphorylation of numerous proteins. During synchronized internalization of the particles induced by shifting the cell to 37 degrees C, Syk kinase and Src homology 2-containing tyrosine phosphatase-1 (SHP-1) were associated with the formed phagosomes. At this step, most of the proteins were dephosphorylated, although some underwent further tyrosine phosphorylation. Quantitative immunoelectron microscopy studies confirmed that Lyn accumulated under the plasma membrane beneath the bound particles. High amounts of the gamma-chain and tyrosine-phosphorylated proteins were also observed under the bound particles. When the particles were internalized, the gamma-chain was still detected in the region of the phagosomes, while amounts of Lyn were markedly reduced. In contrast, the vicinity of the phagosomes was heavily decorated with anti-Syk and anti-SHP-1 Abs. The local level of protein tyrosine phosphorylation was reduced. The data indicate that the accumulation of Lyn during the binding of IgG-coated particles to FcgammaRs correlated with strong tyrosine phosphorylation of numerous proteins, suggesting an initiating role for Lyn in protein phosphorylation at the onset of the phagocytosis. Syk kinase and SHP-1 phosphatase are mainly engaged at the stage of particle internalization.


Assuntos
Precursores Enzimáticos/fisiologia , Fagocitose/imunologia , Proteínas Tirosina Quinases/fisiologia , Receptores de IgG/fisiologia , Quinases da Família src/fisiologia , Animais , Linhagem Celular , Precursores Enzimáticos/análise , Precursores Enzimáticos/metabolismo , Precursores Enzimáticos/ultraestrutura , Peptídeos e Proteínas de Sinalização Intracelular , Macrófagos/química , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/ultraestrutura , Camundongos , Microscopia Imunoeletrônica , Fosfotirosina/análise , Fosfotirosina/metabolismo , Proteína Fosfatase 1 , Transporte Proteico/imunologia , Proteína Tirosina Fosfatase não Receptora Tipo 6 , Proteínas Tirosina Fosfatases/análise , Proteínas Tirosina Fosfatases/metabolismo , Proteínas Tirosina Fosfatases/ultraestrutura , Proteínas Tirosina Quinases/análise , Proteínas Tirosina Quinases/metabolismo , Proteínas Tirosina Quinases/ultraestrutura , Receptores de IgG/análise , Receptores de IgG/metabolismo , Receptores de IgG/ultraestrutura , Transdução de Sinais/imunologia , Quinase Syk , Quinases da Família src/análise , Quinases da Família src/metabolismo , Quinases da Família src/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA