Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
iScience ; 26(10): 107882, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37766989

RESUMO

Vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been proven to be an effective means of decreasing COVID-19 mortality, hospitalization rates, and transmission. One of the vaccines deployed worldwide is ChAdOx1 nCoV-19, which uses an adenovirus vector to drive the expression of the original SARS-CoV-2 spike on the surface of transduced cells. Using cryo-electron tomography and subtomogram averaging, we determined the native structures of the vaccine product expressed on cell surfaces in situ. We show that ChAdOx1-vectored vaccines expressing the Beta SARS-CoV-2 variant produce abundant native prefusion spikes predominantly in one-RBD-up conformation. Furthermore, the ChAdOx1-vectored HexaPro-stabilized spike yields higher cell surface expression, enhanced RBD exposure, and reduced shedding of S1 compared to the wild type. We demonstrate in situ structure determination as a powerful means for studying antigen design options in future vaccine development against emerging novel SARS-CoV-2 variants and broadly against other infectious viruses.

2.
Commun Biol ; 5(1): 1293, 2022 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-36434067

RESUMO

Strategies to prevent the recurrence of poliovirus (PV) after eradication may utilise non-infectious, recombinant virus-like particle (VLP) vaccines. Despite clear advantages over inactivated or attenuated virus vaccines, instability of VLPs can compromise their immunogenicity. Glutathione (GSH), an important cellular reducing agent, is a crucial co-factor for the morphogenesis of enteroviruses, including PV. We report cryo-EM structures of GSH bound to PV serotype 3 VLPs showing that it can enhance particle stability. GSH binds the positively charged pocket at the interprotomer interface shown recently to bind GSH in enterovirus F3 and putative antiviral benzene sulphonamide compounds in other enteroviruses. We show, using high-resolution cryo-EM, the binding of a benzene sulphonamide compound with a PV serotype 2 VLP, consistent with antiviral activity through over-stabilizing the interprotomer pocket, preventing the capsid rearrangements necessary for viral infection. Collectively, these results suggest GSH or an analogous tight-binding antiviral offers the potential for stabilizing VLP vaccines.


Assuntos
Enterovirus , Poliovirus , Vacinas de Partículas Semelhantes a Vírus , Poliovirus/metabolismo , Antivirais/farmacologia , Benzeno , Sítios de Ligação , Antígenos Virais , Glutationa/metabolismo , Sulfonamidas
3.
Cell ; 182(2): 515-530.e17, 2020 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-32610083

RESUMO

Imaging of biological matter across resolution scales entails the challenge of preserving the direct and unambiguous correlation of subject features from the macroscopic to the microscopic level. Here, we present a correlative imaging platform developed specifically for imaging cells in 3D under cryogenic conditions by using X-rays and visible light. Rapid cryo-preservation of biological specimens is the current gold standard in sample preparation for ultrastructural analysis in X-ray imaging. However, cryogenic fluorescence localization methods are, in their majority, diffraction-limited and fail to deliver matching resolution. We addressed this technological gap by developing an integrated, user-friendly platform for 3D correlative imaging of cells in vitreous ice by using super-resolution structured illumination microscopy in conjunction with soft X-ray tomography. The power of this approach is demonstrated by studying the process of reovirus release from intracellular vesicles during the early stages of infection and identifying intracellular virus-induced structures.


Assuntos
Microscopia Crioeletrônica/métodos , Reoviridae/fisiologia , Linhagem Celular Tumoral , Microscopia Crioeletrônica/instrumentação , Endossomos/metabolismo , Endossomos/virologia , Corantes Fluorescentes/química , Humanos , Imageamento Tridimensional , Microscopia de Fluorescência , Reoviridae/química , Liberação de Vírus/fisiologia
4.
Commun Biol ; 3: 9, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31909201

RESUMO

Enteroviruses cause a range of human and animal diseases, some life-threatening, but there remain no licenced anti-enterovirus drugs. However, a benzene-sulfonamide derivative and related compounds have been shown recently to block infection of a range of enteroviruses by binding the capsid at a positively-charged surface depression conserved across many enteroviruses. It has also been established that glutathione is essential for the assembly of many enteroviruses, interacting with the capsid proteins to facilitate the formation of the pentameric assembly intermediate, although the mechanism is unknown. Here we show, by high resolution structure analyses of enterovirus F3, that reduced glutathione binds to the same interprotomer pocket as the benzene-sulfonamide derivative. Bound glutathione makes strong interactions with adjacent protomers, thereby explaining the underlying biological role of this druggable binding pocket and delineating the pharmacophore for potential antivirals.


Assuntos
Proteínas do Capsídeo/genética , Enterovirus/fisiologia , Glutationa/metabolismo , Sequência de Aminoácidos , Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Enterovirus/genética , Alinhamento de Sequência
5.
Nat Commun ; 10(1): 3891, 2019 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-31467275

RESUMO

Herpesviridae is a vast family of enveloped DNA viruses that includes eight distinct human pathogens, responsible for diseases that range from almost asymptomatic to severe and life-threatening. Epstein-Barr virus infects B-cells and epithelial cells, causing infectious mononucleosis, as well as a number of cancers. Epstein-Barr infection cannot be cured since neither vaccine nor antiviral drug treatments are available. All herpesviruses contain a linear double-stranded DNA genome, enclosed within an icosahedral capsid. Viral portal protein plays a key role in the procapsid assembly and DNA packaging. The portal is the entrance and exit pore for the viral genome, making it an attractive pharmacological target for the development of new antivirals. Here we present the atomic structure of the portal protein of Epstein-Barr virus, solved by cryo-electron microscopy at 3.5 Å resolution. The detailed architecture of this protein suggests that it plays a functional role in DNA retention during packaging.


Assuntos
Proteínas do Capsídeo/ultraestrutura , Herpesvirus Humano 4/ultraestrutura , Proteínas Virais/ultraestrutura , Montagem de Vírus , Capsídeo/ultraestrutura , Proteínas do Capsídeo/genética , Microscopia Crioeletrônica , Empacotamento do DNA , DNA Viral/genética , Genoma Viral , Herpesvirus Humano 4/genética , Humanos , Modelos Moleculares , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/ultraestrutura , Proteínas Virais/genética , Vírion/ultraestrutura
6.
Nature ; 570(7760): 252-256, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31142835

RESUMO

Characterizing the genome of mature virions is pivotal to understanding the highly dynamic processes of virus assembly and infection. Owing to the different cellular fates of DNA and RNA, the life cycles of double-stranded (ds)DNA and dsRNA viruses are dissimilar. In terms of nucleic acid packing, dsDNA viruses, which lack genome segmentation and intra-capsid transcriptional machinery, predominantly display single-spooled genome organizations1-8. Because the release of dsRNA into the cytoplasm triggers host defence mechanisms9, dsRNA viruses retain their genomes within a core particle that contains the enzymes required for RNA replication and transcription10-12. The genomes of dsRNA viruses vary greatly in the degree of segmentation. In members of the Reoviridae family, genomes consist of 10-12 segments and exhibit a non-spooled arrangement mediated by RNA-dependent RNA polymerases11-14. However, whether this arrangement is a general feature of dsRNA viruses remains unknown. Here, using cryo-electron microscopy to resolve the dsRNA genome structure of the tri-segmented bacteriophage ɸ6 of the Cystoviridae family, we show that dsRNA viruses can adopt a dsDNA-like single-spooled genome organization. We find that in this group of viruses, RNA-dependent RNA polymerases do not direct genome ordering, and the dsRNA can adopt multiple conformations. We build a model that encompasses 90% of the genome, and use this to quantify variation in the packing density and to characterize the different liquid crystalline geometries that are exhibited by the tightly compacted nucleic acid. Our results demonstrate that the canonical model for the packing of dsDNA can be extended to dsRNA viruses.


Assuntos
Bacteriófago phi 6/química , Bacteriófago phi 6/ultraestrutura , Microscopia Crioeletrônica , Empacotamento do DNA , Cristais Líquidos , Conformação de Ácido Nucleico , RNA de Cadeia Dupla/ultraestrutura , RNA Viral/ultraestrutura , Bacteriófago phi 6/genética , Genoma Viral , Modelos Moleculares , RNA de Cadeia Dupla/química , RNA Viral/química , RNA Polimerase Dependente de RNA/metabolismo
7.
Mol Immunol ; 112: 123-130, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31100550

RESUMO

Cattle antibodies have unusually long CDR3 loops in their heavy chains (HCs), and limited light chain (LC) diversity, raising the question of whether these mask the effect of LC variation on antigen recognition. We have investigated the role of the LC in the structure and activity of two neutralizing cattle antibodies (B4 and B13) that bind the F protein of bovine respiratory syncytial virus (bRSV). Recombinant Fab fragments of B4 and B13 bound bRSV infected cells and showed similar affinities for purified bRSV F protein. Exchanging the LCs between the Fab fragments produced hybrid Fabs: B13* (B13 HC/B4 LC) and B4* (B4 HC/B13 LC). The affinity of B13* to the F protein was found to be two-fold lower than B13 whilst the binding affinity of B4* was reduced at least a hundred-fold compared to B4 such that it no longer bound to bRSV infected cells. Comparison of the structures of B4 and B13 with their LC exchanged counterparts B4* and B13* showed that paratope of the HC variable domain (VH) of B4 was disrupted on pairing with the B13 LC, consistent with the loss of binding activity. By contrast, B13 H3 adopts a similar conformation when paired with either B13 or B4 LCs. These observations confirm the expected key role of the extended H3 loop in antigen-binding by cattle antibodies but also show that the quaternary LC/HC subunit interaction can be crucial for its presentation and thus the LC variable domain (VL) is also important for antigen recognition.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Infecções por Vírus Respiratório Sincicial/imunologia , Vírus Sincicial Respiratório Bovino/imunologia , Animais , Sítios de Ligação de Anticorpos/imunologia , Bovinos , Doenças dos Bovinos/imunologia , Doenças dos Bovinos/virologia , Fragmentos Fab das Imunoglobulinas/imunologia , Proteínas Recombinantes/imunologia , Infecções por Vírus Respiratório Sincicial/veterinária , Infecções por Vírus Respiratório Sincicial/virologia , Proteínas do Envelope Viral/imunologia
8.
Nat Commun ; 10(1): 1456, 2019 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-30926810

RESUMO

Many of the largest known viruses belong to the PRD1-adeno structural lineage characterised by conserved pseudo-hexameric capsomers composed of three copies of a single major capsid protein (MCP). Here, by high-resolution cryo-EM analysis, we show that a class of archaeal viruses possess hetero-hexameric MCPs which mimic the PRD1-adeno lineage trimer. These hetero-hexamers are built from heterodimers and utilise a jigsaw-puzzle system of pegs and holes, and underlying minor capsid proteins, to assemble the capsid laterally from the 5-fold vertices. At these vertices proteins engage inwards with the internal membrane vesicle whilst 2-fold symmetric horn-like structures protrude outwards. The horns are assembled from repeated globular domains attached to a central spine, presumably facilitating multimeric attachment to the cell receptor. Such viruses may represent precursors of the main PRD1-adeno lineage, similarly engaging cell-receptors via 5-fold spikes and using minor proteins to define particle size.


Assuntos
Vírus de Archaea/fisiologia , Montagem de Vírus/fisiologia , Vírus de Archaea/química , Vírus de Archaea/ultraestrutura , Proteínas do Capsídeo/química , Proteínas do Capsídeo/ultraestrutura , Modelos Moleculares
9.
Nat Commun ; 10(1): 846, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30783086

RESUMO

Lipid membrane fusion is an essential function in many biological processes. Detailed mechanisms of membrane fusion and the protein structures involved have been mainly studied in eukaryotic systems, whereas very little is known about membrane fusion in prokaryotes. Haloarchaeal pleomorphic viruses (HRPVs) have a membrane envelope decorated with spikes that are presumed to be responsible for host attachment and membrane fusion. Here we determine atomic structures of the ectodomains of the 57-kDa spike protein VP5 from two related HRPVs revealing a previously unreported V-shaped fold. By Volta phase plate cryo-electron tomography we show that VP5 is monomeric on the viral surface, and we establish the orientation of the molecules with respect to the viral membrane. We also show that the viral membrane fuses with the host cytoplasmic membrane in a process mediated by VP5. This sheds light on protein structures involved in prokaryotic membrane fusion.


Assuntos
Vírus de Archaea/química , Proteínas de Fusão de Membrana/química , Proteínas do Envelope Viral/química , Microscopia Crioeletrônica , Cristalografia por Raios X , Tomografia com Microscopia Eletrônica , Halorubrum/virologia , Fusão de Membrana , Proteínas de Fusão de Membrana/genética , Proteínas de Fusão de Membrana/metabolismo , Domínios Proteicos , Dobramento de Proteína , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo , Vírion/química
10.
Proc Natl Acad Sci U S A ; 115(51): 13087-13092, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30514821

RESUMO

Seneca Valley virus (SVV) is an oncolytic picornavirus with selective tropism for neuroendocrine cancers. SVV mediates cell entry by attachment to the receptor anthrax toxin receptor 1 (ANTXR1). Here we determine atomic structures of mature SVV particles alone and in complex with ANTXR1 in both neutral and acidic conditions, as well as empty "spent" particles in complex with ANTXR1 in acidic conditions by cryoelectron microscopy. SVV engages ANTXR1 mainly by the VP2 DF and VP1 CD loops, leading to structural changes in the VP1 GH loop and VP3 GH loop, which attenuate interprotomer interactions and destabilize the capsid assembly. Despite lying on the edge of the attachment site, VP2 D146 interacts with the metal ion in ANTXR1 and is required for cell entry. Though the individual substitution of most interacting residues abolishes receptor binding and virus propagation, a serine-to-alanine mutation at VP2 S177 significantly increases SVV proliferation. Acidification of the SVV-ANTXR1 complex results in a major reconfiguration of the pentameric capsid assemblies, which rotate ∼20° around the icosahedral fivefold axes to form a previously uncharacterized spent particle resembling a potential uncoating intermediate with remarkable perforations at both two- and threefold axes. These structures provide high-resolution snapshots of SVV entry, highlighting opportunities for anticancer therapeutic optimization.


Assuntos
Proteínas do Capsídeo/metabolismo , Proteínas de Neoplasias/metabolismo , Picornaviridae/fisiologia , Receptores de Superfície Celular/metabolismo , Desenvelopamento do Vírus/fisiologia , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Microscopia Crioeletrônica , Cristalografia por Raios X , Humanos , Proteínas dos Microfilamentos , Modelos Moleculares , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Ligação Proteica , Conformação Proteica , Receptores de Superfície Celular/química , Receptores de Superfície Celular/genética
11.
J Virol ; 92(23)2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30232181

RESUMO

The quasi-envelopment of hepatitis A virus (HAV) capsids in exosome-like virions (eHAV) is an important but incompletely understood aspect of the hepatovirus life cycle. This process is driven by recruitment of newly assembled capsids to endosomal vesicles into which they bud to form multivesicular bodies with intraluminal vesicles that are later released at the plasma membrane as eHAV. The endosomal sorting complexes required for transport (ESCRT) are key to this process, as is the ESCRT-III-associated protein, ALIX, which also contributes to membrane budding of conventional enveloped viruses. YPX1or3L late domains in the structural proteins of these viruses mediate interactions with ALIX, and two such domains exist in the HAV VP2 capsid protein. Mutational studies of these domains are confounded by the fact that the Tyr residues (important for interactions of YPX1or3L peptides with ALIX) are required for efficient capsid assembly. However, single Leu-to-Ala substitutions within either VP2 YPX3L motif (L1-A and L2-A mutants) were well tolerated, albeit associated with significantly reduced eHAV release. In contrast, simultaneous substitutions in both motifs (L1,2-A) eliminated virus release but did not inhibit assembly of infectious intracellular particles. Immunoprecipitation experiments suggested that the loss of eHAV release was associated with a loss of ALIX recruitment. Collectively, these data indicate that HAV YPX3L motifs function as redundant late domains during quasi-envelopment and viral release. Since these motifs present little solvent-accessible area in the crystal structure of the naked extracellular capsid, the capsid structure may be substantially different during quasi-envelopment.IMPORTANCE Nonlytic release of hepatitis A virus (HAV) as exosome-like quasi-enveloped virions is a unique but incompletely understood aspect of the hepatovirus life cycle. Several lines of evidence indicate that the host protein ALIX is essential for this process. Tandem YPX3L "late domains" in the VP2 capsid protein could be sites of interaction with ALIX, but they are not accessible on the surface of an X-ray model of the extracellular capsid, raising doubts about this putative late domain function. Here, we describe YPX3L domain mutants that assemble capsids normally but fail to bind ALIX and be secreted as quasi-enveloped eHAV. Our data support late domain function for the VP2 YPX3L motifs and raise questions about the structure of the HAV capsid prior to and following quasi-envelopment.


Assuntos
Motivos de Aminoácidos , Proteínas do Capsídeo/metabolismo , Capsídeo/fisiologia , Carcinoma Hepatocelular/metabolismo , Vírus da Hepatite A/fisiologia , Vírion/fisiologia , Replicação Viral , Substituição de Aminoácidos , Capsídeo/química , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/virologia , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Endossomos , Hepatite A/genética , Hepatite A/metabolismo , Hepatite A/virologia , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/virologia , Corpos Multivesiculares , Mutação , Conformação Proteica , Células Tumorais Cultivadas , Liberação de Vírus
12.
J Med Chem ; 61(3): 724-733, 2018 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-29272110

RESUMO

Here, we show that four chemically divergent approved drugs reported to inhibit Ebolavirus infection, benztropine, bepridil, paroxetine and sertraline, directly interact with the Ebolavirus glycoprotein. Binding of these drugs destabilizes the protein, suggesting that this may be the mechanism of inhibition, as reported for the anticancer drug toremifene and the painkiller ibuprofen, which bind in the same large cavity on the glycoprotein. Crystal structures show that the position of binding and the mode of interaction within the pocket vary significantly between these compounds. The binding constants (Kd) determined by thermal shift assay correlate with the protein-inhibitor interactions as well as with the antiviral activities determined by virus cell entry assays, supporting the hypothesis that these drugs inhibit viral entry by binding the glycoprotein and destabilizing the prefusion conformation. Details of the protein-inhibitor interactions of these complexes and their relation with binding affinity may facilitate the design of more potent inhibitors.


Assuntos
Antivirais/química , Antivirais/farmacologia , Ebolavirus/efeitos dos fármacos , Ebolavirus/fisiologia , Doença pelo Vírus Ebola/tratamento farmacológico , Animais , Antivirais/metabolismo , Antivirais/uso terapêutico , Chlorocebus aethiops , Glicoproteínas/química , Glicoproteínas/metabolismo , Modelos Moleculares , Conformação Proteica , Termodinâmica , Células Vero , Internalização do Vírus/efeitos dos fármacos
13.
Nat Commun ; 8(1): 245, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28811473

RESUMO

Poliovirus (PV) is the causative agent of poliomyelitis, a crippling human disease known since antiquity. PV occurs in two distinct antigenic forms, D and C, of which only the D form elicits a robust neutralizing response. Developing a synthetically produced stabilized virus-like particle (sVLP)-based vaccine with D antigenicity, without the drawbacks of current vaccines, will be a major step towards the final eradication of poliovirus. Such a sVLP would retain the native antigenic conformation and the repetitive structure of the original virus particle, but lack infectious genomic material. In this study, we report the production of synthetically stabilized PV VLPs in plants. Mice carrying the gene for the human PV receptor are protected from wild-type PV when immunized with the plant-made PV sVLPs. Structural analysis of the stabilized mutant at 3.6 Å resolution by cryo-electron microscopy and single-particle reconstruction reveals a structure almost indistinguishable from wild-type PV3.Despite the success of current vaccination against poliomyelitis, safe, cheap and effective vaccines remain sought for continuing eradication effort. Here the authors use plants to express stabilized virus-like particles of type 3 poliovirus that can induce a protective immune response in mice transgenic for the human poliovirus receptor.


Assuntos
Nicotiana/metabolismo , Poliomielite/prevenção & controle , Vacinas contra Poliovirus/química , Vacinas contra Poliovirus/imunologia , Poliovirus/imunologia , Animais , Anticorpos Antivirais/imunologia , Feminino , Expressão Gênica , Humanos , Masculino , Camundongos , Poliomielite/imunologia , Poliomielite/virologia , Poliovirus/química , Poliovirus/genética , Vacinas contra Poliovirus/administração & dosagem , Vacinas contra Poliovirus/genética , Nicotiana/genética
14.
Proc Natl Acad Sci U S A ; 114(31): 8378-8383, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28716906

RESUMO

Viruses have impacted the biosphere in numerous ways since the dawn of life. However, the evolution, genetic, structural, and taxonomic diversity of viruses remain poorly understood, in part because sparse sampling of the virosphere has concentrated mostly on exploring the abundance and diversity of dsDNA viruses. Furthermore, viral genomes are highly diverse, and using only the current sequence-based methods for classifying viruses and studying their phylogeny is complicated. Here we describe a virus, FLiP (Flavobacterium-infecting, lipid-containing phage), with a circular ssDNA genome and an internal lipid membrane enclosed in the icosahedral capsid. The 9,174-nt-long genome showed limited sequence similarity to other known viruses. The genetic data imply that this virus might use replication mechanisms similar to those found in other ssDNA replicons. However, the structure of the viral major capsid protein, elucidated at near-atomic resolution using cryo-electron microscopy, is strikingly similar to that observed in dsDNA viruses of the PRD1-adenovirus lineage, characterized by a major capsid protein bearing two ß-barrels. The strong similarity between FLiP and another member of the structural lineage, bacteriophage PM2, extends to the capsid organization (pseudo T = 21 dextro) despite the difference in the genetic material packaged and the lack of significant sequence similarity.


Assuntos
Proteínas do Capsídeo/metabolismo , Vírus de DNA/genética , Flavobacterium/virologia , Genoma Viral/genética , Bacteriófago PRD1/genética , Capsídeo , Vírus de DNA/classificação , Vírus de DNA/isolamento & purificação , DNA de Cadeia Simples/genética , Lagos/virologia , Conformação Proteica
15.
Nat Commun ; 8: 15408, 2017 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-28534487

RESUMO

Foot-and-mouth disease virus (FMDV) mediates cell entry by attachment to an integrin receptor, generally αvß6, via a conserved arginine-glycine-aspartic acid (RGD) motif in the exposed, antigenic, GH loop of capsid protein VP1. Infection can also occur in tissue culture adapted virus in the absence of integrin via acquired basic mutations interacting with heparin sulphate (HS); this virus is attenuated in natural infections. HS interaction has been visualized at a conserved site in two serotypes suggesting a propensity for sulfated-sugar binding. Here we determined the interaction between αvß6 and two tissue culture adapted FMDV strains by cryo-electron microscopy. In the preferred mode of engagement, the fully open form of the integrin, hitherto unseen at high resolution, attaches to an extended GH loop via interactions with the RGD motif plus downstream hydrophobic residues. In addition, an N-linked sugar of the integrin attaches to the previously identified HS binding site, suggesting a functional role.


Assuntos
Antígenos de Neoplasias/metabolismo , Proteínas do Capsídeo/metabolismo , Vírus da Febre Aftosa/metabolismo , Integrinas/metabolismo , Oligopeptídeos/química , Motivos de Aminoácidos , Animais , Sítios de Ligação , Células CHO , Capsídeo/metabolismo , Cricetinae , Cricetulus , Microscopia Crioeletrônica , Interações Hidrofóbicas e Hidrofílicas , Polissacarídeos/química , Ligação Proteica , Receptores Virais/metabolismo , Replicação Viral
16.
Nat Commun ; 8(1): 14, 2017 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-28446752

RESUMO

Although several different flaviviruses may cause encephalitis, Japanese encephalitis virus is the most significant, being responsible for thousands of deaths each year in Asia. The structural and molecular basis of this encephalitis is not fully understood. Here, we report the cryo-electron microscopy structure of mature Japanese encephalitis virus at near-atomic resolution, which reveals an unusual "hole" on the surface, surrounded by five encephalitic-specific motifs implicated in receptor binding. Glu138 of E, which is highly conserved in encephalitic flaviviruses, maps onto one of these motifs and is essential for binding to neuroblastoma cells, with the E138K mutation abrogating the neurovirulence and neuroinvasiveness of Japanese encephalitis virus in mice. We also identify structural elements modulating viral stability, notably Gln264 of E, which, when replaced by His264 strengthens a hydrogen-bonding network, leading to a more stable virus. These studies unveil determinants of neurovirulence and stability in Japanese encephalitis virus, opening up new avenues for therapeutic interventions against neurotropic flaviviruses.Japanese encephalitis virus (JEV) is a Flavivirus responsible for thousands of deaths every year for which there are no specific anti-virals. Here, Wang et al. report the cryo-EM structure of mature JEV at near-atomic resolution and identify structural elements that modulate stability and virulence.


Assuntos
Vírus da Encefalite Japonesa (Espécie)/patogenicidade , Vírus da Encefalite Japonesa (Espécie)/ultraestrutura , Encefalite Japonesa/virologia , Neurônios/virologia , Proteínas do Envelope Viral/química , Animais , Sítios de Ligação , Linhagem Celular , Linhagem Celular Tumoral , Chlorocebus aethiops , Cricetulus , Microscopia Crioeletrônica , Vírus da Encefalite Japonesa (Espécie)/genética , Vírus da Encefalite Japonesa (Espécie)/crescimento & desenvolvimento , Encefalite Japonesa/mortalidade , Encefalite Japonesa/patologia , Células Epiteliais/virologia , Expressão Gênica , Humanos , Camundongos Knockout , Modelos Moleculares , Mutação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Análise de Sobrevida , Células Vero , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo , Virulência , Replicação Viral
17.
Nat Microbiol ; 1(11): 16150, 2016 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-27595320

RESUMO

Aichi virus (AiV), an unusual and poorly characterized picornavirus, classified in the genus Kobuvirus, can cause severe gastroenteritis and deaths in children below the age of five years, especially in developing countries1,2. The seroprevalence of AiV is approximately 60% in children under the age of ten years and reaches 90% later in life3,4. There is no available vaccine or effective antiviral treatment. Here, we describe the structure of AiV at 3.7 Å. This first high-resolution structure for a kobuvirus is intermediate between those of the enteroviruses and cardioviruses, with a shallow, narrow depression bounded by the prominent VP0 CD loops (linking the C and D strands of the ß-barrel), replacing the depression known as the canyon, frequently the site of receptor attachment in enteroviruses. VP0 is not cleaved to form VP2 and VP4, so the 'VP2' ß-barrel structure is complemented with a unique extended structure on the inside of the capsid. On the outer surface, a polyproline helix structure, not seen previously in picornaviruses is present at the C terminus of VP1, a position where integrin binding motifs are found in some other picornaviruses. A peptide corresponding to this polyproline motif somewhat attenuates virus infectivity, presumably blocking host-cell attachment. This may guide cellular receptor identification.


Assuntos
Kobuvirus/química , Kobuvirus/ultraestrutura , Receptores Virais/metabolismo , Proteínas Virais/química , Ligação Viral , Antígenos Virais/química , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Criança , Pré-Escolar , Microscopia Crioeletrônica , Genoma Viral , Humanos , Kobuvirus/genética , Kobuvirus/fisiologia , Ligação Proteica , Conformação Proteica
18.
Nature ; 535(7610): 169-172, 2016 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-27362232

RESUMO

Ebola viruses (EBOVs) are responsible for repeated outbreaks of fatal infections, including the recent deadly epidemic in West Africa. There are currently no approved therapeutic drugs or vaccines for the disease. EBOV has a membrane envelope decorated by trimers of a glycoprotein (GP, cleaved by furin to form GP1 and GP2 subunits), which is solely responsible for host cell attachment, endosomal entry and membrane fusion. GP is thus a primary target for the development of antiviral drugs. Here we report the first, to our knowledge, unliganded structure of EBOV GP, and high-resolution complexes of GP with the anticancer drug toremifene and the painkiller ibuprofen. The high-resolution apo structure gives a more complete and accurate picture of the molecule, and allows conformational changes introduced by antibody and receptor binding to be deciphered. Unexpectedly, both toremifene and ibuprofen bind in a cavity between the attachment (GP1) and fusion (GP2) subunits at the entrance to a large tunnel that links with equivalent tunnels from the other monomers of the trimer at the three-fold axis. Protein­drug interactions with both GP1 and GP2 are predominately hydrophobic. Residues lining the binding site are highly conserved among filoviruses except Marburg virus (MARV), suggesting that MARV may not bind these drugs. Thermal shift assays show up to a 14 °C decrease in the protein melting temperature after toremifene binding, while ibuprofen has only a marginal effect and is a less potent inhibitor. These results suggest that inhibitor binding destabilizes GP and triggers premature release of GP2, thereby preventing fusion between the viral and endosome membranes. Thus, these complex structures reveal the mechanism of inhibition and may guide the development of more powerful anti-EBOV drugs.


Assuntos
Antivirais/química , Antivirais/metabolismo , Ebolavirus/química , Toremifeno/química , Toremifeno/metabolismo , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/metabolismo , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/metabolismo , Anti-Inflamatórios não Esteroides/farmacologia , Antivirais/farmacologia , Sítios de Ligação , Linhagem Celular , Sequência Conservada , Ebolavirus/efeitos dos fármacos , Endossomos/efeitos dos fármacos , Endossomos/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Ibuprofeno/química , Ibuprofeno/metabolismo , Ibuprofeno/farmacologia , Ligantes , Marburgvirus/química , Fusão de Membrana/efeitos dos fármacos , Modelos Moleculares , Ligação Proteica , Estabilidade Proteica/efeitos dos fármacos , Estrutura Quaternária de Proteína/efeitos dos fármacos , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Temperatura , Toremifeno/farmacologia , Proteínas do Envelope Viral/antagonistas & inibidores , Ligação Viral/efeitos dos fármacos
19.
Nature ; 527(7576): 114-7, 2015 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-26503046

RESUMO

Negative-sense RNA viruses, such as influenza, encode large, multidomain RNA-dependent RNA polymerases that can both transcribe and replicate the viral RNA genome. In influenza virus, the polymerase (FluPol) is composed of three polypeptides: PB1, PB2 and PA/P3. PB1 houses the polymerase active site, whereas PB2 and PA/P3 contain, respectively, cap-binding and endonuclease domains required for transcription initiation by cap-snatching. Replication occurs through de novo initiation and involves a complementary RNA intermediate. Currently available structures of the influenza A and B virus polymerases include promoter RNA (the 5' and 3' termini of viral genome segments), showing FluPol in transcription pre-initiation states. Here we report the structure of apo-FluPol from an influenza C virus, solved by X-ray crystallography to 3.9 Å, revealing a new 'closed' conformation. The apo-FluPol forms a compact particle with PB1 at its centre, capped on one face by PB2 and clamped between the two globular domains of P3. Notably, this structure is radically different from those of promoter-bound FluPols. The endonuclease domain of P3 and the domains within the carboxy-terminal two-thirds of PB2 are completely rearranged. The cap-binding site is occluded by PB2, resulting in a conformation that is incompatible with transcription initiation. Thus, our structure captures FluPol in a closed, transcription pre-activation state. This reveals the conformation of newly made apo-FluPol in an infected cell, but may also apply to FluPol in the context of a non-transcribing ribonucleoprotein complex. Comparison of the apo-FluPol structure with those of promoter-bound FluPols allows us to propose a mechanism for FluPol activation. Our study demonstrates the remarkable flexibility of influenza virus RNA polymerase, and aids our understanding of the mechanisms controlling transcription and genome replication.


Assuntos
Gammainfluenzavirus/enzimologia , RNA Polimerase Dependente de RNA/química , Apoenzimas/química , Apoenzimas/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Endonucleases/química , Endonucleases/metabolismo , Ativação Enzimática , Modelos Moleculares , Iniciação Traducional da Cadeia Peptídica , Regiões Promotoras Genéticas/genética , Ligação Proteica , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Capuzes de RNA/metabolismo , RNA Viral/biossíntese , RNA Viral/metabolismo , RNA Polimerase Dependente de RNA/metabolismo , Ribonucleoproteínas/química
20.
Sci Rep ; 5: 14150, 2015 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-26412210

RESUMO

Anti-cytokine therapeutic antibodies have been demonstrated to be effective in the treatment of several auto-immune disorders. However, The problems in antibody manufacture and the immunogenicity caused by multiple doses of antibodies inspire people to use auto-cytokine as immunogen to induce anti-cytokine antibodies. Nevertheless, the tolerance for inducing immune response against self-antigen has hindered the wide application of the strategy. To overcome the tolerance, here we proposed a strategy using the inter-species cytokine as immunogen for active immunization (TISCAI) to induce anti-cytokine antibody. As a proof of concept, an inter-species cytokine RANKL was successfully used as immunogen to induce anti-RANKL immune response. Furthermore, to prevent undesirable side-effects, the human RANKL was mutated based on the crystal structure of the complex of human RANKL and its rodent counterpart receptor RANK. We found, the antibodies produced blocked the osteoclast development in vitro and osteoporosis in OVX rat models. The results demonstrated this strategy adopted is very useful for general anti-cytokine immunotherapy for different diseases settings.


Assuntos
Imunoterapia , Osteoporose/genética , Osteoporose/imunologia , Ligante RANK/genética , Ligante RANK/imunologia , Vacinas , Animais , Anticorpos/imunologia , Autoantígenos/imunologia , Autoantígenos/farmacologia , Reabsorção Óssea/genética , Reabsorção Óssea/metabolismo , Diferenciação Celular/efeitos dos fármacos , Modelos Animais de Doenças , Humanos , Imunização , Camundongos , Modelos Moleculares , Osteoclastos/citologia , Osteoclastos/imunologia , Osteoclastos/metabolismo , Osteoporose/diagnóstico , Osteoporose/terapia , Ovariectomia , Ligação Proteica , Conformação Proteica , Ligante RANK/química , Ligante RANK/metabolismo , Ratos , Receptor Ativador de Fator Nuclear kappa-B/química , Receptor Ativador de Fator Nuclear kappa-B/metabolismo , Microtomografia por Raio-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA