Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Inflammation ; 47(1): 346-362, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37831367

RESUMO

Infectious diseases are a significant burden in global healthcare. Pathogens engage with different host defense mechanisms. However, it is currently unknown if there are disease-specific immune signatures and/or if different pathogens elicit common immune-associated molecular entities to common therapeutic interventions. We studied patients enrolled through the Human Immunology Project Consortium (HIPC), which focuses on immune responses to various infections. Blood samples were collected and analyzed from patients during infection and follow-up time points at the convalescent stage. The study included samples from patients with Lyme disease (LD), tuberculosis (TB), malaria (MLA), dengue virus (DENV), and West Nile virus (WNV), as well as kidney transplant patients with cytomegalovirus (CMV) and polyomavirus (BKV) infections. Using an antibody-based assay, we quantified ~ 350 cell surface markers, cytokines, and chemokines involved in inflammation and immunity. Unique protein signatures were identified specific to the acute phase of infection irrespective of the pathogen type, with significant changes during convalescence. In addition, tumor necrosis factor receptor superfamily member 6 (TNR6), C-C Motif Chemokine Receptor 7 (CCR7), and C-C motif chemokine ligand-1 (CCL1) were increased in the acute and convalescent phases across all viral, bacterial, and protozoan compared to blood from healthy donors. Furthermore, despite the differences between pathogens, proteins were enriched in common biological pathways such as cell surface receptor signaling pathway and response to external stimulus. In conclusion, we demonstrated that irrespective of the pathogen type, there are common immunoregulatory and proinflammatory signals.


Assuntos
Proteoma , Vírus do Nilo Ocidental , Humanos , Inflamação , Citocinas , Transdução de Sinais/fisiologia
2.
Front Immunol ; 13: 1042741, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36591224

RESUMO

Background: Identifying immune processes required for liver-stage sterilizing immunity to malaria remains an open problem. The IMRAS trial comprised 5x immunizations with radiation-attenuated sporozoites resulting in 55% protection from subsequent challenge. Methods: To identify correlates of vaccination and protection, we performed detailed systems immunology longitudinal profiling of the entire trial time course including whole blood transcriptomics, detailed PBMC cell phenotyping and serum antigen array profiling of 11 IMRAS radiation-attenuated sporozoite (RAS) vaccinees at up to 21 timepoints each. Results: RAS vaccination induced serum antibody responses to CSP, TRAP, and AMA1 in all vaccinees. We observed large numbers of differentially expressed genes associated with vaccination response and protection, with distinctly differing transcriptome responses elicited after each immunization. These included inflammatory and proliferative responses, as well as increased abundance of monocyte and DC subsets after each immunization. Increases in Vδ2 γδ; T cells and MAIT cells were observed in response to immunization over the course of study, and CD1c+ CD40+ DC abundance was significantly associated with protection. Interferon responses strongly differed between protected and non-protected individuals with high interferon responses after the 1st immunization, but not the 2nd-5th. Blood transcriptional interferon responses were correlated with abundances of different circulating classical and non-classical monocyte populations. Conclusions: This study has revealed multiple coordinated immunological processes induced by vaccination and associated with protection. Our work represents the most detailed immunological profiling of a RAS vaccine trial performed to date and will guide the design and interpretation of future malaria vaccine trials.


Assuntos
Malária , Esporozoítos , Animais , Humanos , Linfócitos T CD8-Positivos , Imunidade , Interferons , Leucócitos Mononucleares , Malária/prevenção & controle , Vacinação/métodos , Ensaios Clínicos como Assunto
3.
Malar J ; 20(1): 308, 2021 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-34243763

RESUMO

BACKGROUND: Vaccination with radiation-attenuated Plasmodium falciparum sporozoites is known to induce protective immunity. However, the mechanisms underlying this protection remain unclear. In this work, two recent radiation-attenuated sporozoite vaccination studies were used to identify potential transcriptional correlates of vaccination-induced protection. METHODS: Longitudinal whole blood RNAseq transcriptome responses to immunization with radiation-attenuated P. falciparum sporozoites were analysed and compared across malaria-naïve adult participants (IMRAS) and malaria-experienced adult participants (BSPZV1). Parasite dose and method of delivery differed between trials, and immunization regimens were designed to achieve incomplete protective efficacy. Observed protective efficacy was 55% in IMRAS and 20% in BSPZV1. Study vaccine dosings were chosen to elicit both protected and non-protected subjects, so that protection-associated responses could be identified. RESULTS: Analysis of comparable time points up to 1 week after the first vaccination revealed a shared cross-study transcriptional response programme, despite large differences in number and magnitude of differentially expressed genes between trials. A time-dependent regulatory programme of coherent blood transcriptional modular responses was observed, involving induction of inflammatory responses 1-3 days post-vaccination, with cell cycle responses apparent by day 7 in protected individuals from both trials. Additionally, strongly increased induction of inflammation and interferon-associated responses was seen in non-protected IMRAS participants. All individuals, except for non-protected BSPZV1 participants, showed robust upregulation of cell-cycle associated transcriptional responses post vaccination. CONCLUSIONS: In summary, despite stark differences between the two studies, including route of vaccination and status of malaria exposure, responses were identified that were associated with protection after PfRAS vaccination. These comprised a moderate early interferon response peaking 2 days post vaccination, followed by a later proliferative cell cycle response steadily increasing over the first 7 days post vaccination. Non-protection is associated with deviations from this model, observed in this study with over-induction of early interferon responses in IMRAS and failure to mount a cell cycle response in BSPZV1.


Assuntos
Vacinas Antimaláricas/uso terapêutico , Malária Falciparum/prevenção & controle , Anticorpos Antiprotozoários/sangue , Ensaios Clínicos como Assunto , Humanos , Vacinas Antimaláricas/administração & dosagem , Plasmodium falciparum/genética , Plasmodium falciparum/imunologia , Proteínas de Protozoários/genética , Esporozoítos/genética , Esporozoítos/imunologia , Transcrição Gênica , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/uso terapêutico
4.
Clin Infect Dis ; 71(6): 1481-1490, 2020 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-31621832

RESUMO

BACKGROUND: Chemoprophylaxis vaccination with sporozoites (CVac) with chloroquine induces protection against a homologous Plasmodium falciparum sporozoite (PfSPZ) challenge, but whether blood-stage parasite exposure is required for protection remains unclear. Chloroquine suppresses and clears blood-stage parasitemia, while other antimalarial drugs, such as primaquine, act against liver-stage parasites. Here, we evaluated CVac regimens using primaquine and/or chloroquine as the partner drug to discern whether blood-stage parasite exposure impacts protection against homologous controlled human malaria infection. METHODS: In a Phase I, randomized, partial double-blind, placebo-controlled study of 36 malaria-naive adults, all CVac subjects received chloroquine prophylaxis and bites from 12-15 P. falciparum-infected mosquitoes (CVac-chloroquine arm) at 3 monthly iterations, and some received postexposure primaquine (CVac-primaquine/chloroquine arm). Drug control subjects received primaquine, chloroquine, and uninfected mosquito bites. After a chloroquine washout, subjects, including treatment-naive infectivity controls, underwent homologous, PfSPZ controlled human malaria infection and were monitored for parasitemia for 21 days. RESULTS: No serious adverse events occurred. During CVac, all but 1 subject in the study remained blood-smear negative, while only 1 subject (primaquine/chloroquine arm) remained polymerase chain reaction-negative. Upon challenge, compared to infectivity controls, 3/3 chloroquine arm subjects displayed delayed patent parasitemia (P = .01) but not sterile protection, while 3/11 primaquine/chloroquine subjects remained blood-smear negative. CONCLUSIONS: CVac-primaquine/chloroquine is safe and induces sterile immunity to P. falciparum in some recipients, but a single 45 mg dose of primaquine postexposure does not completely prevent blood-stage parasitemia. Unlike previous studies, CVac-chloroquine did not produce sterile immunity. CLINICAL TRIALS REGISTRATION: NCT01500980.


Assuntos
Antimaláricos , Malária Falciparum , Adulto , Animais , Antimaláricos/uso terapêutico , Quimioprevenção , Humanos , Malária Falciparum/tratamento farmacológico , Malária Falciparum/prevenção & controle , Plasmodium falciparum , Esporozoítos , Vacinação
5.
Cell Chem Biol ; 23(5): 608-617, 2016 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-27133314

RESUMO

Kinetoplastids cause Chagas disease, human African trypanosomiasis, and leishmaniases. Current treatments for these diseases are toxic and inefficient, and our limited knowledge of drug targets and inhibitors has dramatically hindered the development of new drugs. Here we used a chemogenetic approach to identify new kinetoplastid drug targets and inhibitors. We conditionally knocked down Trypanosoma brucei inositol phosphate (IP) pathway genes and showed that almost every pathway step is essential for parasite growth and infection. Using a genetic and chemical screen, we identified inhibitors that target IP pathway enzymes and are selective against T. brucei. Two series of these inhibitors acted on T. brucei inositol polyphosphate multikinase (IPMK) preventing Ins(1,4,5)P3 and Ins(1,3,4,5)P4 phosphorylation. We show that IPMK is functionally conserved among kinetoplastids and that its inhibition is also lethal for Trypanosoma cruzi. Hence, IP enzymes are viable drug targets in kinetoplastids, and IPMK inhibitors may aid the development of new drugs.


Assuntos
Fosfatos de Inositol/metabolismo , Parasitos/efeitos dos fármacos , Parasitos/enzimologia , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Trypanosoma brucei brucei/efeitos dos fármacos , Trypanosoma brucei brucei/enzimologia , Animais , Relação Dose-Resposta a Droga , Células HeLa , Células Hep G2 , Humanos , Fosfatos de Inositol/antagonistas & inibidores , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Inibidores de Proteínas Quinases/química , Relação Estrutura-Atividade , Trypanosoma brucei brucei/crescimento & desenvolvimento , Células Tumorais Cultivadas
6.
Mol Cell ; 17(5): 621-30, 2005 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-15749013

RESUMO

RNA editing in trypanosomatids is catalyzed by a high molecular mass RNP complex, which is only partially characterized. TbMP42 is a 42 kDa protein of unknown function that copurifies with the editing complex. The polypeptide is characterized by two Zn fingers and a potential barrel structure/OB-fold at its C terminus. Using recombinant TbMP42, we show that the protein can bind to dsRNA and dsDNA but fails to recognize DNA/RNA hybrids. rTbMP42 degrades ssRNA by a 3' to 5' exoribonuclease activity. In addition, rTbMP42 has endoribonuclease activity, which preferentially hydrolyzes non-base-paired uridylate-containing sequences. Gene silencing of TbMP42 inhibits cell growth and is ultimately lethal to the parasite. Mitochondrial extracts from TbMP42-minus trypanosomes have only residual RNA editing activity and strongly reduced endo-exoribonuclease activity. However, all three activities can be restored by the addition of rTbMP42. Together, the data suggest that TbMP42 contributes both endo- and exoribonuclease activity to the editing reaction cycle.


Assuntos
Proteínas de Protozoários/fisiologia , Edição de RNA , Ribonucleoproteínas/fisiologia , Animais , Técnicas Biossensoriais , Cátions , Dicroísmo Circular , Clonagem Molecular , DNA/química , DNA Complementar/metabolismo , Relação Dose-Resposta a Droga , Eletroforese em Gel de Poliacrilamida , Inativação Gênica , Humanos , Hidrólise , Mitocôndrias/metabolismo , Peptídeos/química , Fenótipo , Dobramento de Proteína , Estrutura Terciária de Proteína , Proteínas de Protozoários/química , RNA/química , Interferência de RNA , RNA de Cadeia Dupla/química , RNA Mensageiro/metabolismo , Proteínas Recombinantes/química , Ribonucleases/metabolismo , Ribonucleoproteínas/química , Trypanosoma brucei brucei , Zinco/química , Dedos de Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA