Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 12: 716606, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34539651

RESUMO

Recent clinical experience has demonstrated that adoptive regulatory T (Treg) cell therapy is a safe and feasible strategy to suppress immunopathology via induction of host tolerance to allo- and autoantigens. However, clinical trials continue to be compromised due to an inability to manufacture a sufficient Treg cell dose. Multipotent adult progenitor cells (MAPCⓇ) promote Treg cell differentiation in vitro, suggesting they may be repurposed to enhance ex vivo expansion of Tregs for adoptive cellular therapy. Here, we use a Good Manufacturing Practice (GMP) compatible Treg expansion platform to demonstrate that MAPC cell-co-cultured Tregs (MulTreg) exhibit a log-fold increase in yield across two independent cohorts, reducing time to target dose by an average of 30%. Enhanced expansion is coupled to a distinct Treg cell-intrinsic transcriptional program characterized by elevated expression of replication-related genes (CDK1, PLK1, CDC20), downregulation of progenitor and lymph node-homing molecules (LEF1 CCR7, SELL) and induction of intestinal and inflammatory tissue migratory markers (ITGA4, CXCR1) consistent with expression of a gut homing (CCR7lo ß7hi) phenotype. Importantly, we find that MulTreg are more readily expanded from patients with autoimmune disease compared to matched Treg lines, suggesting clinical utility in gut and/or T helper type1 (Th1)-driven pathology associated with autoimmunity or transplantation. Relative to expanded Tregs, MulTreg retain equivalent and robust purity, FoxP3 Treg-Specific Demethylated Region (TSDR) demethylation, nominal effector cytokine production and potent suppression of Th1-driven antigen specific and polyclonal responses in vitro and xeno Graft vs Host Disease (xGvHD) in vivo. These data support the use of MAPC cell co-culture in adoptive Treg therapy platforms as a means to rescue expansion failure and reduce the time required to manufacture a stable, potently suppressive product.


Assuntos
Autoimunidade , Contagem de Linfócitos , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Células-Tronco Adultas/citologia , Células-Tronco Adultas/imunologia , Células-Tronco Adultas/metabolismo , Animais , Doenças Autoimunes/etiologia , Doenças Autoimunes/metabolismo , Doenças Autoimunes/patologia , Biomarcadores , Células Cultivadas , Técnicas de Cocultura , Modelos Animais de Doenças , Suscetibilidade a Doenças , Feminino , Regulação da Expressão Gênica , Doença Enxerto-Hospedeiro/diagnóstico , Doença Enxerto-Hospedeiro/etiologia , Humanos , Imunofenotipagem , Masculino , Camundongos , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
2.
Stem Cells Transl Med ; 10(11): 1561-1574, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34397170

RESUMO

Cell-based therapy for the treatment of inflammatory disorders has focused on the application of mesenchymal stromal cells (MSCs) and multipotent adult progenitor cells (MAPCs). Despite the recent positive findings in industry-sponsored clinical trials of MSCs and MAPCs for graft vs host disease (GvHD), cell therapy is efficacious in some but not all patients, highlighting the need to identify strategies to enhance cell-based therapeutic efficacy. Here, we demonstrate the capacity for interferon (IFN)-γ licensing to enhance human MAPC efficacy and retention following early administration in a humanized mouse model of acute GvHD (aGvHD). Activation of the nuclear receptor peroxisome proliferator-activated receptor delta (PPARδ) negatively influenced the retention and efficacy of human MAPCs as well as IFN-γ-licensed MAPCs in the aGvHD model. PPARδ antagonism significantly enhanced the efficacy of human MAPCs when administered early in the humanized aGvHD model. COX-2 expression in human MAPC was significantly decreased in IFN-γ licensed MAPCs exposed to a PPARδ agonist. Importantly, MAPC exposure to the PPARδ antagonist in the presence of a COX-2 inhibitor indomethacin before administration significantly reduced the efficacy of PPARδ antagonized MAPCs in the aGvHD humanized mouse model. This is the first study to demonstrate the importance of PPARδ in human MAPC efficacy in vivo and highlights the importance of understanding the disease microenvironment in which cell-based therapies are to be administered. In particular, the presence of PPARδ ligands may negatively influence MAPC or MSC therapeutic efficacy.


Assuntos
Células-Tronco Adultas , Doença Enxerto-Hospedeiro , Células-Tronco Mesenquimais , PPAR delta , Animais , Doença Enxerto-Hospedeiro/terapia , Humanos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Células-Tronco Multipotentes/metabolismo , PPAR delta/metabolismo
3.
Front Immunol ; 11: 1226, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32714318

RESUMO

Background: Pre-clinical research with multi-potent adult progenitor cells (MAPC® cells, Multistem, Athersys Inc., Cleveland, Ohio) suggests their potential as an anti-inflammatory and immunomodulatory therapy in organ transplantation. Normothermic machine perfusion of the liver (NMP-L) has been proposed as a way of introducing therapeutic agents into the donor organ. Delivery of cellular therapy to human donor livers using this technique has not yet been described in the literature. The primary objectives of this study were to develop a technique for delivering cellular therapy to human donor livers using NMP-L and demonstrate engraftment. Methods: Six discarded human livers were perfused for 6 h at 37°C using the Liver Assist (Organ Assist, Groningen). 50 × 106 CMPTX-labeled MAPC cells were infused directly into the right lobe via the hepatic artery (HA, n = 3) or portal vein (PV, n = 3) over 20 min at different time points during the perfusion. Perfusion parameters were recorded and central and peripheral biopsies were taken at multiple time-points from both lobes and subjected to standard histological stains and confocal microscopy. Perfusate was analyzed using a 35-plex multiplex assay and proteomic analysis. Results: There was no detrimental effect on perfusion flow parameters on infusion of MAPC cells by either route. Three out of six livers met established criteria for organ viability. Confocal microscopy demonstrated engraftment of MAPC cells across vascular endothelium when perfused via the artery. 35-plex multiplex analysis of perfusate yielded 13 positive targets, 9 of which appeared to be related to the infusion of MAPC cells (including Interleukin's 1b, 4, 5, 6, 8, 10, MCP-1, GM-CSF, SDF-1a). Proteomic analysis revealed 295 unique proteins in the perfusate from time-points following the infusion of cellular therapy, many of which have strong links to MAPC cells and mesenchymal stem cells in the literature. Functional enrichment analysis demonstrated their immunomodulatory potential. Conclusion: We have demonstrated that cells can be delivered directly to the target organ, prior to host immune cell population exposure and without compromising the perfusion. Transendothelial migration occurs following arterial infusion. MAPC cells appear to secrete a host of soluble factors that would have anti-inflammatory and immunomodulatory benefits in a human model of liver transplantation.


Assuntos
Células-Tronco Adultas , Transplante de Fígado , Doadores Vivos , Transplante de Células-Tronco , Células-Tronco Adultas/citologia , Células-Tronco Adultas/metabolismo , Biomarcadores , Terapia Baseada em Transplante de Células e Tecidos , Quimiocinas/metabolismo , Terapia Combinada , Citocinas/metabolismo , Imunofluorescência , Humanos , Imuno-Histoquímica , Imunofenotipagem , Imunoterapia , Transplante de Fígado/métodos , Preservação de Órgãos/métodos , Perfusão , Proteoma , Transplante de Células-Tronco/métodos
4.
Front Immunol ; 9: 645, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29740426

RESUMO

Lymphodepletion strategies are used in the setting of transplantation (including bone marrow, hematopoietic cell, and solid organ) to create space or to prevent allograft rejection and graft versus host disease. Following lymphodepletion, there is an excess of IL-7 available, and T cells that escape depletion respond to this cytokine undergoing accelerated proliferation. Moreover, this environment promotes the skew of T cells to a Th1 pro-inflammatory phenotype. Existing immunosuppressive regimens fail to control this homeostatic proliferative (HP) response, and thus the development of strategies to successfully control HP while sparing T cell reconstitution (providing a functioning immune system) represents a significant unmet need in patients requiring lymphodepletion. Multipotent adult progenitor cells (MAPC®) have the capacity to control T cell proliferation and Th1 cytokine production. Herein, this study shows that MAPC cells suppressed anti-thymocyte globulin-induced cytokine production but spared T cell reconstitution in a pre-clinical model of lymphodepletion. Importantly, MAPC cells administered intraperitoneally were efficacious in suppressing interferon-γ production and in promoting the expansion of regulatory T cells in the lymph nodes. MAPC cells administered intraperitoneally accumulated in the omentum but were not present in the spleen suggesting a role for soluble factors. MAPC cells suppressed lymphopenia-induced cytokine production in a prostaglandin E2-dependent manner. This study suggests that MAPC cell therapy may be useful as a novel strategy to target lymphopenia-induced pathogenic T cell responses in lymphodepleted patients.


Assuntos
Células-Tronco Adultas/imunologia , Rejeição de Enxerto/prevenção & controle , Imunoterapia/métodos , Células-Tronco Pluripotentes/imunologia , Linfócitos T Reguladores/imunologia , Células Th1/imunologia , Transplante , Células-Tronco Adultas/ultraestrutura , Animais , Proliferação de Células , Células Cultivadas , Dinoprostona/metabolismo , Modelos Animais de Doenças , Homeostase , Humanos , Ativação Linfocitária , Depleção Linfocítica , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Pluripotentes/transplante
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA