Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 12: 697298, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34858389

RESUMO

Introduction: Bone metastases (BMs) are a negative prognostic factor in patients with non-small cell lung cancer (NSCLC). Although immune-checkpoint inhibitors (ICIs) have dramatically changed the therapeutic landscape of NSCLC, little information is available on BMs from NSCLC treated with ICIs alone or in association with bone-targeted therapy (BTT) such as zoledronate or denosumab. Methods: From 2014 to 2020, 111 of the 142 patients with BMs secondary to NSCLC extrapolated from the prospective multicenter Italian BM Database were eligible for analysis. Information on blood count, comorbidities, and toxicity was retrospectively collected. The neutrophil-to-lymphocyte ratio (NLR) pre- and post-treatment was calculated. Survival was analyzed using the Kaplan-Meier method, with statistical significance of survival differences assessed using the log-rank test. Results: Median age was 66 (range, 42-84) years. Performance status (PS) Eastern Cooperative Oncology Group (ECOG) was 0-1 in 79/111 patients. The majority of patients (89.2%) had adenocarcinoma histology. At a median follow-up of 47.4 months, median progression-free (mPFS) and overall survival (mOS) was 4.9 (95%CI, 2.8-10.0) and 11.9 (95%CI, 8.2-14.4) months, respectively. Forty-six (43.4%) patients with BM NSCLC underwent first- or further-line therapy with ICIs: 28 (60.8%) received nivolumab, 9 (19.6%) pembrolizumab, and 9 (19.6%) atezolizumab. Of the 46 patients treated with ICIs, 30 (65.2%) underwent BTT: 24 (80.0%) with zoledronate and 6 (20.0%) with denosumab. The ICI-alone group had an mOS of 15.8 months [95%CI, 8.2-not evaluable (NE)] vs. 21.8 months (95%CI, 14.5-not evaluable) for the ICI plus BTT group and 7.5 (95%CI, 6.1-10.9) months for the group receiving other treatments (p < 0.001). NLR ≤5 had a positive impact on OS. Conclusion: BTT appears to have a synergistic effect when used in combination with ICIs, improving patient survival.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias Ósseas/tratamento farmacológico , Osso e Ossos/patologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Denosumab/uso terapêutico , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Linfócitos/imunologia , Neutrófilos/imunologia , Ácido Zoledrônico/uso terapêutico , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias Ósseas/mortalidade , Neoplasias Ósseas/secundário , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Carcinoma Pulmonar de Células não Pequenas/secundário , Sinergismo Farmacológico , Feminino , Humanos , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Metástase Neoplásica , Prognóstico , Estudos Retrospectivos , Análise de Sobrevida
2.
Oncotarget ; 9(38): 25355-25382, 2018 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-29861877

RESUMO

In the "precision medicine" era, chemotherapy still remains the backbone for the treatment of many cancers, but no affordable predictors of response to the chemodrugs are available in clinical practice. Single nucleotide polymorphisms (SNPs) are gene sequence variations occurring in more than 1% of the full population, and account for approximately 80% of inter-individual genomic heterogeneity. A number of studies have investigated the predictive role of SNPs of genes enrolled in both pharmacodynamics and pharmacokinetics of chemotherapeutics, but the clinical implementation of related results has been modest so far. Among the examined germline polymorphic variants, several SNPs of dihydropyrimidine dehydrogenase (DPYD) and uridine diphosphate glucuronosyltransferases (UGT) have shown a robust role as predictors of toxicity following fluoropyrimidine- and/or irinotecan-based treatments respectively, and a few guidelines are mandatory in their detection before therapy initiation. Contrasting results, however, have been reported on the capability of variants of other genes as MTHFR, TYMS, ERCC1, XRCC1, GSTP1, CYP3A4/3A5 and ABCB1, in predicting either therapy efficacy or toxicity in patients undergoing treatment with pyrimidine antimetabolites, platinum derivatives, irinotecan and taxanes. While formal recommendations for routine testing of these SNPs cannot be drawn at this moment, therapeutic decisions may indeed benefit of germline genomic information, when available. Here, we summarize the clinical impact of germline genomic variants on the efficacy and toxicity of major chemodrugs, with the aim to facilitate the therapeutic expectance of clinicians in the odiern quicksand field of complex molecular biology concepts and controversial trial data interpretation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA