RESUMO
Inhalation is a major route by which human exposure to substances can occur. Resources have therefore been dedicated to optimize human-relevant in vitro approaches that can accurately and efficiently predict the toxicity of inhaled chemicals for robust risk assessment and management. In this study-the IN vitro Systems to PredIct REspiratory toxicity Initiative-2 cell-based systems were used to predict the ability of chemicals to cause portal-of-entry effects on the human respiratory tract. A human bronchial epithelial cell line (BEAS-2B) and a reconstructed human tissue model (MucilAir, Epithelix) were exposed to triethoxysilane (TES) and trimethoxysilane (TMS) as vapor (mixed with N2 gas) at the air-liquid interface. Cell viability, cytotoxicity, and secretion of inflammatory markers were assessed in both cell systems and, for MucilAir tissues, morphology, barrier integrity, cilia beating frequency, and recovery after 7 days were also examined. The results show that both cell systems provide valuable information; the BEAS-2B cells were more sensitive in terms of cell viability and inflammatory markers, whereas MucilAir tissues allowed for the assessment of additional cellular effects and time points. As a proof of concept, the data were also used to calculate human equivalent concentrations. As expected, based on chemical properties and existing data, the silanes demonstrated toxicity in both systems with TMS being generally more toxic than TES. Overall, the results demonstrate that these in vitro test systems can provide valuable information relevant to predicting the likelihood of toxicity following inhalation exposure to chemicals in humans.
Assuntos
Células Epiteliais , Silanos , Humanos , Silanos/toxicidade , Silanos/metabolismo , Linhagem Celular , BrônquiosRESUMO
New approach methodologies (NAMs) are emerging chemical safety assessment tools consisting of in vitro and in silico (computational) methodologies intended to reduce, refine, or replace (3R) various in vivo animal testing methods traditionally used for risk assessment. Significant progress has been made toward the adoption of NAMs for human health and environmental toxicity assessment. However, additional efforts are needed to expand their development and their use in regulatory decision making. A virtual symposium was held during the 2021 Cooperation Centre for Scientific Research Relative to Tobacco (CORESTA) Smoke Science and Product Technology (SSPT) conference (titled "Advancing New Alternative Methods for Tobacco Harm Reduction"), with the goals of introducing the concepts and potential application of NAMs in the evaluation of potentially reduced-risk (PRR) tobacco products. At the symposium, experts from regulatory agencies, research organizations, and NGOs shared insights on the status of available tools, strengths, limitations, and opportunities in the application of NAMs using case examples from safety assessments of chemicals and tobacco products. Following seven presentations providing background and application of NAMs, a discussion was held where the presenters and audience discussed the outlook for extending the NAMs toxicological applications for tobacco products. The symposium, endorsed by the CORESTA In Vitro Tox Subgroup, Biomarker Subgroup, and NextG Tox Task Force, illustrated common ground and interest in science-based engagement across the scientific community and stakeholders in support of tobacco regulatory science. Highlights of the symposium are summarized in this paper.
RESUMO
New approach methodologies (NAMs) are increasingly being used for regulatory decision making by agencies worldwide because of their potential to reliably and efficiently produce information that is fit for purpose while reducing animal use. This article summarizes the ability to use NAMs for the assessment of human health effects of industrial chemicals and pesticides within the United States, Canada, and European Union regulatory frameworks. While all regulations include some flexibility to allow for the use of NAMs, the implementation of this flexibility varies across product type and regulatory scheme. This article provides an overview of various agencies' guidelines and strategic plans on the use of NAMs, and specific examples of the successful application of NAMs to meet regulatory requirements. It also summarizes intra- and inter-agency collaborations that strengthen scientific, regulatory, and public confidence in NAMs, thereby fostering their global use as reliable and relevant tools for toxicological evaluations. Ultimately, understanding the current regulatory landscape helps inform the scientific community on the steps needed to further advance timely uptake of approaches that best protect human health and the environment.
RESUMO
Regulatory frameworks on tobacco and other nicotine-containing products (TNCP) continue to evolve as novel products emerge, including electronic nicotine delivery systems (e.g., electronic cigarettes or vaping products), heated tobacco products, or certain smokeless products (e.g., nicotine pouches). This article focuses on selected regulations for TNCPs that do not make health claims, and on the opportunities to use new approach methodologies (NAMs) to meet regulatory requirements for toxicological information. The manuscript presents a brief overview of regulations and examples of feedback from regulatory agencies whilst highlighting NAMs that have been successfully applied, or could be used, in a regulatory setting, either as stand-alone methods or as part of a weight-of-evidence approach to address selected endpoints. The authors highlight the need for agencies and stakeholders to collaborate and communicate on the development and application of NAMs to address specific regulatory toxicological endpoints. Collaboration across sectors and geographies will facilitate harmonized use of robust testing approaches to evaluate TNCPs without animal testing.
RESUMO
Organs-on-chips have the potential to improve drug development efficiency and decrease the need for animal testing. For the successful integration of these devices in research and industry, they must reproduce in vivo contexts as closely as possible and be easy to use. Here, we describe a 'breathing' lung-on-chip array equipped with a passive medium exchange mechanism that provide an in vivo-like environment to primary human lung alveolar cells (hAEpCs) and primary lung endothelial cells. This configuration allows the preservation of the phenotype and the function of hAEpCs for several days, the conservation of the epithelial barrier functionality, while enabling simple sampling of the supernatant from the basal chamber. In addition, the chip design increases experimental throughput and enables trans-epithelial electrical resistance measurements using standard equipment. Biological validation revealed that human primary alveolar type I (ATI) and type II-like (ATII) epithelial cells could be successfully cultured on the chip over multiple days. Moreover, the effect of the physiological cyclic strain showed that the epithelial barrier permeability was significantly affected. Long-term co-culture of primary human lung epithelial and endothelial cells demonstrated the potential of the lung-on-chip array for reproducible cell culture under physiological conditions. Thus, this breathing lung-on-chip array, in combination with patients' primary ATI, ATII, and lung endothelial cells, has the potential to become a valuable tool for lung research, drug discovery and precision medicine.
Assuntos
Alvéolos Pulmonares/citologia , Respiração , Análise Serial de Tecidos/métodos , Células Epiteliais/citologia , Desenho de Equipamento , Humanos , Alvéolos Pulmonares/fisiologia , Reprodutibilidade dos Testes , Análise Serial de Tecidos/instrumentaçãoRESUMO
We report a lung-on-a-chip array that mimics the pulmonary parenchymal environment, including the thin alveolar barrier and the three-dimensional cyclic strain induced by breathing movements. The micro-diaphragm used to stretch the alveolar barrier is inspired by the in vivo diaphragm, the main muscle responsible for inspiration. The design of this device aims not only at best reproducing the in vivo conditions found in the lung parenchyma but also at making the device robust and its handling easy. An innovative concept, based on the reversible bonding of the device, is presented that enables accurate control of the concentration of cells cultured on the membrane by easily accessing both sides of the membranes. The functionality of the alveolar barrier could be restored by co-culturing epithelial and endothelial cells that form tight monolayers on each side of a thin, porous and stretchable membrane. We showed that cyclic stretch significantly affects the permeability properties of epithelial cell layers. Furthermore, we also demonstrated that the strain influences the metabolic activity and the cytokine secretion of primary human pulmonary alveolar epithelial cells obtained from patients. These results demonstrate the potential of this device and confirm the importance of the mechanical strain induced by breathing in pulmonary research.