Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
JCI Insight ; 9(8)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38646936

RESUMO

Patients with Fabry disease suffer from chronic debilitating pain and peripheral sensory neuropathy with minimal treatment options, but the cellular drivers of this pain are unknown. Here, we propose a mechanism we believe to be novel in which altered signaling between Schwann cells and sensory neurons underlies the peripheral sensory nerve dysfunction we observed in a genetic rat model of Fabry disease. Using in vivo and in vitro electrophysiological recordings, we demonstrated that Fabry rat sensory neurons exhibited pronounced hyperexcitability. Schwann cells probably contributed to this finding because application of mediators released from cultured Fabry Schwann cells induced spontaneous activity and hyperexcitability in naive sensory neurons. We examined putative algogenic mediators using proteomic analysis and found that Fabry Schwann cells released elevated levels of the protein p11 (S100A10), which induced sensory neuron hyperexcitability. Removal of p11 from Fabry Schwann cell media caused hyperpolarization of neuronal resting membrane potentials, indicating that p11 may contribute to the excessive neuronal excitability caused by Fabry Schwann cells. These findings demonstrate that sensory neurons from rats with Fabry disease exhibit hyperactivity caused in part by Schwann cell release of the protein p11.


Assuntos
Modelos Animais de Doenças , Doença de Fabry , Células de Schwann , Células Receptoras Sensoriais , Animais , Masculino , Ratos , Células Cultivadas , Doença de Fabry/metabolismo , Doença de Fabry/fisiopatologia , Proteômica , Células de Schwann/metabolismo , Células Receptoras Sensoriais/metabolismo , Feminino , Ratos Sprague-Dawley
2.
Res Sq ; 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37886453

RESUMO

We previously reported functional Piezo1 expression in Schwann cells of the peripheral nervous system. This study is designed to further investigate the role of Schwann cell Piezo1 in peripheral nociception. We first developed an adeno-associated viral (AAV) vector that has primary Schwann cell tropism after delivery into the sciatic nerve. This was achieved by packing AAV-GFP transcribed by a hybrid CMV enhancer/chicken ß-actin (CBA) promoter using a capsid AAVolig001 to generate AAVolig001-CBA-GFP. Five weeks after intrasciatic injection of AAVolig001-CBA-GFP in naïve rats, GFP expression was detected selectively in the Schwann cells of the sciatic nerve. A short hairpin RNA against rat Piezo1 (PZ1shRNA) was designed that showed efficient physical and functional knockdown of Piezo1 in NG108 neuronal cells. A dual promoter and bidirectional AAV encoding a U6-driven PZ1shRNA and CBA-transcribed GFP was packed with capsid olig001 (AAVolig001-PZ1shRNA), and AAV was injected into unilateral sciatic nerve immediately after induction of common peroneal nerve injury (CPNI). Results showed that the development of mechanical hypersensitivity in the CPNI rats injected with AAVolig001-PZ1shRNA was mitigated, compared to rats subjected with AAVolig001-scramble. Selective in vivo Schwann cell transduction and functional block of Piezo1 channel activity of primary cultured Schwann cells was confirmed. Together, our data demonstrate that 1) AAVolig001 has unique and selective primary tropism to Schwann cells via intrasciatic delivery and 2) Schwann cell Piezo1 contributes to mechanical hypersensitivity following nerve injury.

3.
Pain ; 164(8): 1874-1886, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-36897169

RESUMO

ABSTRACT: Debilitating pain affects the lives of patients with sickle cell disease (SCD). Current pain treatment for patients with SCD fail to completely resolve acute or chronic SCD pain. Previous research indicates that the cation channel transient receptor potential vanilloid type 4 (TRPV4) mediates peripheral hypersensitivity in various inflammatory and neuropathic pain conditions that may share similar pathophysiology with SCD, but this channel's role in chronic SCD pain remains unknown. Thus, the current experiments examined whether TRPV4 regulates hyperalgesia in transgenic mouse models of SCD. Acute blockade of TRPV4 alleviated evoked behavioral hypersensitivity to punctate, but not dynamic, mechanical stimuli in mice with SCD. TRPV4 blockade also reduced the mechanical sensitivity of small, but not large, dorsal root ganglia neurons from mice with SCD. Furthermore, keratinocytes from mice with SCD showed sensitized TRPV4-dependent calcium responses. These results shed new light on the role of TRPV4 in SCD chronic pain and are the first to suggest a role for epidermal keratinocytes in the heightened sensitivity observed in SCD.


Assuntos
Anemia Falciforme , Antineoplásicos , Dor Crônica , Animais , Camundongos , Anemia Falciforme/complicações , Anemia Falciforme/metabolismo , Antineoplásicos/uso terapêutico , Hiperalgesia/tratamento farmacológico , Camundongos Transgênicos , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo
4.
Int J Parasitol ; 53(8): 427-434, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36610555

RESUMO

The parasitic flatworm ion channel, TRPMPZQ, is a non-selective cation channel that mediates Ca2+ entry and membrane depolarization when activated by the anthelmintic drug, praziquantel (PZQ). TRPMPZQ is conserved in all platyhelminth genomes scrutinized to date, with the sensitivity of TRPMPZQ in any particular flatworm correlating with the overall sensitivity of the worm to PZQ. Conservation of this channel suggests it plays a role in flatworm physiology, but the nature of the endogenous cues that activate this channel are currently unknown. Here, we demonstrate that TRPMPZQ is activated in a ligand-independent manner by membrane stretch, with the electrophysiological signature of channel opening events being identical whether evoked by negative pressure, or by PZQ. TRPMPZQ is therefore a multimodal ion channel gated by both physical and chemical cues. The mechanosensitivity of TRPMPZQ is one route for endogenous activation of this ion channel that holds relevance for schistosome physiology given the persistent pressures and mechanical cues experienced throughout the parasite life cycle.


Assuntos
Proteínas de Helminto , Schistosoma mansoni , Canais de Cátion TRPM , Canais de Cátion TRPM/metabolismo , Proteínas de Helminto/metabolismo , Humanos , Animais , Pressão , Adenosina Difosfato Ribose/metabolismo
5.
Pain ; 164(2): 316-324, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35639439

RESUMO

ABSTRACT: Targeted muscle reinnervation (TMR) is a clinical intervention that is rapidly becoming common in major limb amputation to prevent or reduce amputation-related pain. However, TMR is much less effective when applied long after injury compared with acute TMR. Since the mechanisms governing pain relief in TMR of amputated nerves are unknown, we developed a preclinical model as a platform for mechanistic examination. Following spared nerve injury (SNI), rats underwent either TMR, simple neuroma excision, or a sham manipulation of the injury site. These interventions were performed immediately or delayed (3 or 12 weeks) after SNI. Pain behavior was measured as sensitivity to mechanical stimuli (pin, von Frey, and dynamic brush) and thermal stimuli (acetone and radiant heat). Spared nerve injury produced hypersensitivity to all mechanical stimuli and cold, which persisted after sham surgery. Targeted muscle reinnervation at the time of SNI prevented the development of pain behaviors and performing TMR 3 weeks after SNI reversed pain behaviors to baseline. By contrast, TMR performed at 12 weeks after SNI had no effect on pain behaviors. Neuroma excision resulted in significantly less reduction in hyperalgesia compared with TMR when performed 3 weeks after SNI but had no effect at 12 weeks after SNI. In this model, the pain phenotype induced by nerve transection is reduced by TMR when performed within 3 weeks after injury. However, TMR delayed 12 weeks after injury fails to reduce pain behaviors. This replicates clinical experience with limb amputation, supporting validity of this model for examining the mechanisms of TMR analgesia.


Assuntos
Neuroma , Procedimentos Neurocirúrgicos , Ratos , Animais , Amputação Cirúrgica/efeitos adversos , Dor/cirurgia , Hiperalgesia/etiologia , Neuroma/etiologia , Neuroma/cirurgia , Músculos
6.
Pain ; 162(5): 1305-1321, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33259456

RESUMO

ABSTRACT: Severe neuropathic pain is a hallmark of Fabry disease, a genetic disorder caused by a deficiency in lysosomal α-galactosidase A. Pain experienced by these patients significantly impacts their quality of life and ability to perform everyday tasks. Patients with Fabry disease suffer from peripheral neuropathy, sensory abnormalities, acute pain crises, and lifelong ongoing pain. Although treatment of pain through medication and enzyme replacement therapy exists, pain persists in many of these patients. Some has been learned in the past decades regarding clinical manifestations of pain in Fabry disease and the pathological effects of α-galactosidase A insufficiency in neurons. Still, it is unclear how pain and sensory abnormalities arise in patients with Fabry disease and how these can be targeted with therapeutics. Our knowledge is limited in part due to the lack of adequate preclinical models to study the disease. This review will detail the types of pain, sensory abnormalities, influence of demographics on pain, and current strategies to treat pain experienced by patients with Fabry disease. In addition, we discuss the current knowledge of Fabry pain pathogenesis and which aspects of the disease preclinical models accurately recapitulate. Understanding the commonalities and divergences between humans and preclinical models can be used to further interrogate mechanisms causing the pain and sensory abnormalities as well as advance development of the next generation of therapeutics to treat pain in patients with Fabry disease.


Assuntos
Doença de Fabry , Neuralgia , Doença de Fabry/complicações , Humanos , Neuralgia/etiologia , Neurônios , Qualidade de Vida , alfa-Galactosidase/genética , alfa-Galactosidase/uso terapêutico
7.
J Biol Chem ; 294(49): 18873-18880, 2019 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-31653697

RESUMO

The anthelmintic drug praziquantel (PZQ) is used to treat schistosomiasis, a neglected tropical disease that affects over 200 million people worldwide. PZQ causes Ca2+ influx and spastic paralysis of adult worms and rapid vacuolization of the worm surface. However, the mechanism of action of PZQ remains unknown even after 40 years of clinical use. Here, we demonstrate that PZQ activates a schistosome transient receptor potential (TRP) channel, christened SmTRPMPZQ, present in parasitic schistosomes and other PZQ-sensitive parasites. Several properties of SmTRPMPZQ were consistent with known effects of PZQ on schistosomes, including (i) nanomolar sensitivity to PZQ; (ii) stereoselectivity toward (R)-PZQ; (iii) mediation of sustained Ca2+ signals in response to PZQ; and (iv) a pharmacological profile that mirrors the well-known effects of PZQ on muscle contraction and tegumental disruption. We anticipate that these findings will spur development of novel therapeutic interventions to manage schistosome infections and broader interest in PZQ, which is finally unmasked as a potent flatworm TRP channel activator.


Assuntos
Anti-Helmínticos/farmacologia , Praziquantel/farmacologia , Schistosoma/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo , Animais , Eletrofisiologia , Feminino , Células HEK293 , Humanos , Camundongos , Schistosoma/efeitos dos fármacos
8.
Pain ; 160(8): 1794-1816, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31335648

RESUMO

Postoperative pain management continues to be suboptimal because of the lack of effective nonopioid therapies and absence of understanding of sex-driven differences. Here, we asked how the NLRP3 inflammasome contributes to postoperative pain. Inflammasomes are mediators of the innate immune system that are responsible for activation and secretion of IL-1ß upon stimulation by specific molecular signals. Peripheral IL-1ß is known to contribute to the mechanical sensitization induced by surgical incision. However, it is not known which inflammasome mediates the IL-1ß release after surgical incision. Among the 9 known inflammasomes, the NLRP3 inflammasome is ideally positioned to drive postoperative pain through IL-1ß production because NLRP3 can be activated by factors that are released by incision. Here, we show that male mice that lack NLRP3 (NLRP3) recover from surgery-induced behavioral and neuronal mechanical sensitization faster and display less surgical site inflammation than mice expressing NLRP3 (wild-type). By contrast, female NLRP3 mice exhibit minimal attenuation of the postoperative mechanical hypersensitivity and no change in postoperative inflammation compared with wild-type controls. Sensory neuron-specific deletion of NLRP3 revealed that in males, NLRP3 expressed in non-neuronal cells and potentially sensory neurons drives postoperative pain. However, in females, only the NLRP3 that may be expressed in sensory neurons contributes to postoperative pain where the non-neuronal cell contribution is NLRP3 independent. This is the first evidence of a key role for NLRP3 in postoperative pain and reveals immune-mediated sex differences in postoperative pain.


Assuntos
Inflamassomos/metabolismo , Inflamação/metabolismo , Dor Pós-Operatória/metabolismo , Receptores de Superfície Celular/metabolismo , Animais , Comportamento Animal/fisiologia , Feminino , Inflamação/genética , Masculino , Camundongos , Camundongos Knockout , Limiar da Dor/fisiologia , Dor Pós-Operatória/genética , Estimulação Física , Receptores de Superfície Celular/genética , Fatores Sexuais
9.
Pain ; 159(8): 1652-1663, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29697532

RESUMO

Approximately one-third of individuals with sickle cell disease (SCD) develop chronic pain. This debilitating pain is inadequately treated because the underlying mechanisms driving the pain are poorly understood. In addition to persistent pain, patients with SCD are also in a tonically proinflammatory state. Previous studies have revealed that there are elevated plasma levels of many inflammatory mediators including chemokine (c-c motif) ligand 2 (CCL2) in individuals with SCD. Using a transgenic mouse model of SCD, we investigated the contributions of CCL2 signaling to SCD-related pain. Inhibition of chemokine receptor 2 (CCR2), but not CCR4, alleviated the behavioral mechanical and cold hypersensitivity in SCD. Furthermore, acute CCR2 blockade reversed both the behavioral and the in vitro responsiveness of sensory neurons to an agonist of TRPV1, a neuronal ion channel previously implicated in SCD pain. These results provide insight into the immune-mediated regulation of hypersensitivity in SCD and could inform future development of analgesics or therapeutic measures to prevent chronic pain.


Assuntos
Anemia Falciforme/metabolismo , Síndromes Periódicas Associadas à Criopirina/metabolismo , Hiperalgesia/metabolismo , Receptores CCR2/metabolismo , Animais , Benzoxazinas/farmacologia , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos , Receptores CCR2/antagonistas & inibidores , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/metabolismo , Compostos de Espiro/farmacologia
10.
JCI Insight ; 3(6)2018 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-29563343

RESUMO

Fabry disease, the most common lysosomal storage disease, affects multiple organs and results in a shortened life span. This disease is caused by a deficiency of the lysosomal enzyme α-galactosidase A, which leads to glycosphingolipid accumulation in many cell types. Neuropathic pain is an early and severely debilitating symptom in patients with Fabry disease, but the cellular and molecular mechanisms that cause the pain are unknown. We generated a rat model of Fabry disease, the first nonmouse model to our knowledge. Fabry rats had substantial serum and tissue accumulation of α-galactosyl glycosphingolipids and had pronounced mechanical pain behavior. Additionally, Fabry rat dorsal root ganglia displayed global N-glycan alterations, sensory neurons were laden with inclusions, and sensory neuron somata exhibited prominent sensitization to mechanical force. We found that the cation channel transient receptor potential ankyrin 1 (TRPA1) is sensitized in Fabry rat sensory neurons and that TRPA1 antagonism reversed the behavioral mechanical sensitization. This study points toward TRPA1 as a potentially novel target to treat the pain experienced by patients with Fabry disease.


Assuntos
Doença de Fabry/complicações , Doença de Fabry/metabolismo , Neuralgia/complicações , Neuralgia/metabolismo , Animais , Animais Geneticamente Modificados , Comportamento Animal , Modelos Animais de Doenças , Eletrofisiologia , Feminino , Gânglios Espinais/metabolismo , Gânglios Espinais/patologia , Técnicas de Silenciamento de Genes , Predisposição Genética para Doença/genética , Glicoesfingolipídeos/sangue , Glicoesfingolipídeos/metabolismo , Humanos , Fígado , Masculino , Ratos , Células Receptoras Sensoriais/metabolismo , Células Receptoras Sensoriais/patologia , Canal de Cátion TRPA1/metabolismo , alfa-Galactosidase/genética , alfa-Galactosidase/metabolismo
11.
Elife ; 72018 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-29336303

RESUMO

The first point of our body's contact with tactile stimuli (innocuous and noxious) is the epidermis, the outermost layer of skin that is largely composed of keratinocytes. Here, we sought to define the role that keratinocytes play in touch sensation in vivo and ex vivo. We show that optogenetic inhibition of keratinocytes decreases behavioral and cellular mechanosensitivity. These processes are inherently mediated by ATP signaling, as demonstrated by complementary cutaneous ATP release and degradation experiments. Specific deletion of P2X4 receptors in sensory neurons markedly decreases behavioral and primary afferent mechanical sensitivity, thus positioning keratinocyte-released ATP to sensory neuron P2X4 signaling as a critical component of baseline mammalian tactile sensation. These experiments lay a vital foundation for subsequent studies into the dysfunctional signaling that occurs in cutaneous pain and itch disorders, and ultimately, the development of novel topical therapeutics for these conditions.


Assuntos
Trifosfato de Adenosina/metabolismo , Queratinócitos/fisiologia , Receptores Purinérgicos P2X4/metabolismo , Transdução de Sinais , Tato , Animais , Células Cultivadas , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Optogenética
12.
Mol Pain ; 13: 1744806917717040, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28604222

RESUMO

Background: TRPV1 (transient receptor potential vanilloid subfamily member 1) is a pain signaling channel highly expressed in primary sensory neurons. Attempts for analgesia by systemic TRPV1 blockade produce undesirable side effects, such as hyperthermia and impaired heat pain sensation. One approach for TRPV1 analgesia is to target TRPV1 along the peripheral sensory pathway. Results: For functional blockade of TRPV1 signaling, we constructed an adeno-associated virus (AAV) vector expressing a recombinant TRPV1 interfering peptide aptamer, derived from a 38mer tetrameric assembly domain (TAD), encompassing residues 735 to 772 of rat TRPV1, fused to the C-terminus of enhanced green fluorescent protein (EGFP). AAV-targeted sensory neurons expressing EGFP-TAD after vector injection into the dorsal root ganglia (DRG) revealed decreased inward calcium current and diminished intracellular calcium accumulation in response to capsaicin, compared to neurons of naïve or expressing EGFP alone. To examine the potential for treating neuropathic pain, AAV-EGFP-TAD was injected into fourth and fifth lumbar (L) DRGs of rats subjected to neuropathic pain by tibial nerve injury (TNI). Results showed that AAV-directed selective expression of EGFP-TAD in L4/L5 DRG neuron somata, and their peripheral and central axonal projections can limit TNI-induced neuropathic pain behavior, including hypersensitivity to heat and, to a less extent, mechanical stimulation. Conclusion: Selective inhibition of TRPV1 activity in primary sensory neurons by DRG delivery of AAV-encoded analgesic interfering peptide aptamers is efficacious in attenuation of neuropathic pain. With further improvements of vector constructs and in vivo application, this approach might have the potential to develop as an alternative gene therapy strategy to treat chronic pain, especially heat hypersensitivity, without complications due to systemic TRPV1 blockade.


Assuntos
Aptâmeros de Peptídeos/farmacologia , Dependovirus/genética , Neuralgia/tratamento farmacológico , Canais de Cátion TRPV/genética , Animais , Aptâmeros de Peptídeos/genética , Gânglios Espinais/metabolismo , Vetores Genéticos/genética , Masculino , Neuralgia/genética , Neuralgia/metabolismo , Traumatismos dos Nervos Periféricos/metabolismo , Traumatismos dos Nervos Periféricos/virologia , Ratos Sprague-Dawley , Células Receptoras Sensoriais/metabolismo
13.
PLoS One ; 11(3): e0151602, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26978657

RESUMO

Keratinocytes are the first cells that come into direct contact with external tactile stimuli; however, their role in touch transduction in vivo is not clear. The ion channel Transient Receptor Potential Ankyrin 1 (TRPA1) is essential for some mechanically-gated currents in sensory neurons, amplifies mechanical responses after inflammation, and has been reported to be expressed in human and mouse skin. Other reports have not detected Trpa1 mRNA transcripts in human or mouse epidermis. Therefore, we set out to determine whether selective deletion of Trpa1 from keratinocytes would impact mechanosensation. We generated K14Cre-Trpa1fl/fl mice lacking TRPA1 in K14-expressing cells, including keratinocytes. Surprisingly, Trpa1 transcripts were very poorly detected in epidermis of these mice or in controls, and detection was minimal enough to preclude observation of Trpa1 mRNA knockdown in the K14Cre-Trpa1fl/fl mice. Unexpectedly, these K14Cre-Trpa1fl/fl mice nonetheless exhibited a pronounced deficit in mechanosensitivity at the behavioral and primary afferent levels, and decreased mechanically-evoked ATP release from skin. Overall, while these data suggest that the intended targeted deletion of Trpa1 from keratin 14-expressing cells of the epidermis induces functional deficits in mechanotransduction and ATP release, these deficits are in fact likely due to factors other than reduction of Trpa1 expression in adult mouse keratinocytes because they express very little, if any, Trpa1.


Assuntos
Trifosfato de Adenosina/metabolismo , Queratinócitos/metabolismo , Mecanorreceptores/fisiologia , Mecanotransdução Celular/fisiologia , Canais de Potencial de Receptor Transitório/deficiência , Vias Aferentes/fisiologia , Animais , Animais Congênicos , Artrite Experimental/fisiopatologia , Células Epidérmicas , Epiderme/metabolismo , Adjuvante de Freund/toxicidade , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Genes Reporter , Integrases , Camundongos , Camundongos Endogâmicos C57BL , Nociceptividade/fisiologia , Especificidade de Órgãos , Limiar da Dor/fisiologia , Estimulação Física/efeitos adversos , RNA Mensageiro/biossíntese , Células Receptoras Sensoriais/fisiologia , Pele/citologia , Pele/embriologia , Canal de Cátion TRPA1 , Canais de Potencial de Receptor Transitório/biossíntese , Canais de Potencial de Receptor Transitório/genética , Canais de Potencial de Receptor Transitório/fisiologia
14.
J Neurosci ; 35(42): 14086-102, 2015 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-26490852

RESUMO

The sensation of touch is initiated when fast conducting low-threshold mechanoreceptors (Aß-LTMRs) generate impulses at their terminals in the skin. Plasticity in this system is evident in the process of adaption, in which a period of diminished sensitivity follows prior stimulation. CaMKII is an ideal candidate for mediating activity-dependent plasticity in touch because it shifts into an enhanced activation state after neuronal depolarizations and can thereby reflect past firing history. Here we show that sensory neuron CaMKII autophosphorylation encodes the level of Aß-LTMR activity in rat models of sensory deprivation (whisker clipping, tail suspension, casting). Blockade of CaMKII signaling limits normal adaptation of action potential generation in Aß-LTMRs in excised skin. CaMKII activity is also required for natural filtering of impulse trains as they travel through the sensory neuron T-junction in the DRG. Blockade of CaMKII selectively in presynaptic Aß-LTMRs removes dorsal horn inhibition that otherwise prevents Aß-LTMR input from activating nociceptive lamina I neurons. Together, these consequences of reduced CaMKII function in Aß-LTMRs cause low-intensity mechanical stimulation to produce pain behavior. We conclude that, without normal sensory activity to maintain adequate levels of CaMKII function, the touch pathway shifts into a pain system. In the clinical setting, sensory disuse may be a critical factor that enhances and prolongs chronic pain initiated by other conditions. SIGNIFICANCE STATEMENT: The sensation of touch is served by specialized sensory neurons termed low-threshold mechanoreceptors (LTMRs). We examined the role of CaMKII in regulating the function of these neurons. Loss of CaMKII function, such as occurred in rats during sensory deprivation, elevated the generation and propagation of impulses by LTMRs, and altered the spinal cord circuitry in such a way that low-threshold mechanical stimuli produced pain behavior. Because limbs are protected from use during a painful condition, this sensitization of LTMRs may perpetuate pain and prevent functional rehabilitation.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Mecanorreceptores/fisiologia , Nociceptores/fisiologia , Limiar da Dor/fisiologia , Dor/fisiopatologia , Tato/genética , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Dependovirus/genética , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/genética , Gânglios Espinais/citologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hiperalgesia/fisiopatologia , Masculino , Mecanorreceptores/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora/genética , Proteínas do Tecido Nervoso/metabolismo , Dor/etiologia , Doenças do Sistema Nervoso Periférico/complicações , Ratos , Ratos Sprague-Dawley , Privação Sensorial/fisiologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Pele/inervação
15.
Pain ; 155(12): 2476-2485, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24953902

RESUMO

Sickle cell disease (SCD) is associated with acute vaso-occlusive crises that trigger painful episodes and frequently involves ongoing, chronic pain. In addition, both humans and mice with SCD experience heightened cold sensitivity. However, studies have not addressed the mechanism(s) underlying the cold sensitization or its progression with age. Here we measured thermotaxis behavior in young and aged mice with severe SCD. Sickle mice had a marked increase in cold sensitivity measured by a cold preference test. Furthermore, cold hypersensitivity worsened with advanced age. We assessed whether enhanced peripheral input contributes to the chronic cold pain behavior by recording from C fibers, many of which are cold sensitive, in skin-nerve preparations. We observed that C fibers from sickle mice displayed a shift to warmer (more sensitive) cold detection thresholds. To address mechanisms underlying the cold sensitization in primary afferent neurons, we quantified mRNA expression levels for ion channels thought to be involved in cold detection. These included the transient receptor potential melastatin 8 (Trpm8) and transient receptor potential ankyrin 1 (Trpa1) channels, as well as the 2-pore domain potassium channels, TREK-1 (Kcnk2), TREK-2 (Kcnk10), and TRAAK (Kcnk4). Surprisingly, transcript expression levels of all of these channels were comparable between sickle and control mice. We further examined transcript expression of 83 additional pain-related genes, and found increased mRNA levels for endothelin 1 and tachykinin receptor 1. These factors may contribute to hypersensitivity in sickle mice at both the afferent and behavioral levels.


Assuntos
Envelhecimento , Anemia Falciforme/complicações , Síndromes Periódicas Associadas à Criopirina/etiologia , Regulação da Expressão Gênica/fisiologia , Limiar da Dor/fisiologia , Fatores Etários , Anemia Falciforme/genética , Animais , Temperatura Baixa/efeitos adversos , Síndromes Periódicas Associadas à Criopirina/patologia , Endotelina-1/genética , Endotelina-1/metabolismo , Gânglios Espinais/patologia , Regulação da Expressão Gênica/genética , Hemoglobina A/genética , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fibras Nervosas Amielínicas/fisiologia , Canais de Potássio de Domínios Poros em Tandem/genética , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Células Receptoras Sensoriais/metabolismo , Pele/inervação , Pele/patologia , Canais de Cátion TRPC/genética , Canais de Cátion TRPC/metabolismo , Canais de Cátion TRPM/genética , Canais de Cátion TRPM/metabolismo
16.
Mol Pain ; 9: 61, 2013 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-24286165

RESUMO

BACKGROUND: The spared nerve injury (SNI) model of neuropathic pain produces robust and reproducible behavioral mechanical hypersensitivity. Although this rodent model of neuropathic pain has been well established and widely used, peripheral mechanisms underlying this phenotype remain incompletely understood. Here we investigated the role of cutaneous sensory fibers in the maintenance of mechanical hyperalgesia in mice post-SNI. FINDINGS: SNI produced robust, long-lasting behavioral mechanical hypersensitivity compared to sham and naïve controls beginning by post-operative day (POD) 1 and continuing through at least POD 180. We performed teased fiber recordings on single cutaneous fibers from the spared sural nerve using ex vivo skin-nerve preparations. Recordings were made between POD 16-42 after SNI or sham surgery. Aδ-mechanoreceptors (AM) and C fibers, many of which are nociceptors, from SNI mice fired significantly more action potentials in response to suprathreshold mechanical stimulation than did fibers from either sham or naïve control mice. However, there was no increase in spontaneous activity. CONCLUSIONS: To our knowledge, this is the first study evaluating the contribution of primary afferent fibers in the SNI model. These data suggest that enhanced suprathreshold firing in AM and C fibers may play a role in the marked, persistent mechanical hypersensitivity observed in this model. These results may provide insight into mechanisms underlying neuropathic pain in humans.


Assuntos
Hiperalgesia/metabolismo , Nociceptores/metabolismo , Células Receptoras Sensoriais/metabolismo , Animais , Masculino , Mecanotransdução Celular/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Fibras Nervosas Mielinizadas/metabolismo , Fibras Nervosas Amielínicas/metabolismo
17.
Glia ; 61(9): 1418-1428, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23839956

RESUMO

Spinal muscular atrophy (SMA) is a genetic disorder caused by the deletion of the survival motor neuron 1 (SMN1) gene that leads to loss of motor neurons in the spinal cord. Although motor neurons are selectively lost during SMA pathology, selective replacement of SMN in motor neurons does not lead to full rescue in mouse models. Due to the ubiquitous expression of SMN, it is likely that other cell types besides motor neurons are affected by its disruption and therefore may contribute to disease pathology. Here we show that astrocytes in SMAΔ7 mouse spinal cord and from SMA-induced pluripotent stem cells exhibit morphological and cellular changes indicative of activation before overt motor neuron loss. Furthermore, our in vitro studies show mis-regulation of basal calcium and decreased response to adenosine triphosphate stimulation indicating abnormal astrocyte function. Together, for the first time, these data show early disruptions in astrocytes that may contribute to SMA disease pathology.


Assuntos
Astrócitos/metabolismo , Cálcio/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Atrofia Muscular Espinal/patologia , Medula Espinal/citologia , Trifosfato de Adenosina/farmacologia , Fatores Etários , Aldeído Desidrogenase/metabolismo , Análise de Variância , Animais , Animais Recém-Nascidos , Astrócitos/efeitos dos fármacos , Linhagem Celular Transformada , Colina O-Acetiltransferase/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteína Glial Fibrilar Ácida/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Atrofia Muscular Espinal/genética , Mutação/genética , Nestina/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-NH , Células-Tronco Pluripotentes/metabolismo , Receptores Purinérgicos P2Y2/metabolismo , Proteínas S100/metabolismo , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Proteína 2 de Sobrevivência do Neurônio Motor/metabolismo
18.
J Physiol ; 591(4): 1111-31, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23148321

RESUMO

The T-junction of sensory neurons in the dorsal root ganglion (DRG) is a potential impediment to action potential (AP) propagation towards the CNS. Using intracellular recordings from rat DRG neuronal somata during stimulation of the dorsal root, we determined that the maximal rate at which all of 20 APs in a train could successfully transit the T-junction (following frequency) was lowest in C-type units, followed by A-type units with inflected descending limbs of the AP, and highest in A-type units without inflections. In C-type units, following frequency was slower than the rate at which AP trains could be produced in either dorsal root axonal segments or in the soma alone, indicating that the T-junction is a site that acts as a low-pass filter for AP propagation. Following frequency was slower for a train of 20 APs than for two, indicating that a cumulative process leads to propagation failure. Propagation failure was accompanied by diminished somatic membrane input resistance, and was enhanced when Ca(2+)-sensitive K(+) currents were augmented or when Ca(2+)-sensitive Cl(-) currents were blocked. After peripheral nerve injury, following frequencies were increased in axotomized C-type neurons and decreased in axotomized non-inflected A-type neurons. These findings reveal that the T-junction in sensory neurons is a regulator of afferent impulse traffic. Diminished filtering of AP trains at the T-junction of C-type neurons with axotomized peripheral processes could enhance the transmission of activity that is ectopically triggered in a neuroma or the neuronal soma, possibly contributing to pain generation.


Assuntos
Potenciais de Ação/fisiologia , Células Receptoras Sensoriais/fisiologia , Nervos Espinhais/lesões , Nervos Espinhais/fisiopatologia , Animais , Comportamento Animal , Gânglios Espinais/fisiologia , Masculino , Ratos , Ratos Sprague-Dawley
19.
Mol Pain ; 8: 75, 2012 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-23013719

RESUMO

BACKGROUND: The Transient Receptor Potential (TRP) ion channel TRPA1 is a key player in pain pathways. Irritant chemicals activate ion channel TRPA1 via covalent modification of N-terminal cysteines. We and others have shown that 15-Deoxy-Δ12, 14-prostaglandin J2 (15d-PGJ2) similarly activates TRPA1 and causes channel-dependent nociception. Paradoxically, 15d-PGJ2 can also be anti-nociceptive in several pain models. Here we hypothesized that activation and subsequent desensitization of TRPA1 in dorsal root ganglion (DRG) neurons underlies the anti-nociceptive property of 15d-PGJ2. To investigate this, we utilized a battery of behavioral assays and intracellular Ca2+ imaging in DRG neurons to test if pre-treatment with 15d-PGJ2 inhibited TRPA1 to subsequent stimulation. RESULTS: Intraplantar pre-injection of 15d-PGJ2, in contrast to mustard oil (AITC), attenuated acute nocifensive responses to subsequent injections of 15d-PGJ2 and AITC, but not capsaicin (CAP). Intraplantar 15d-PGJ2-administered after the induction of inflammation-reduced mechanical hypersensitivity in the Complete Freund's Adjuvant (CFA) model for up to 2 h post-injection. The 15d-PGJ2-mediated reduction in mechanical hypersensitivity is dependent on TRPA1, as this effect was absent in TRPA1 knockout mice. Ca2+ imaging studies of DRG neurons demonstrated that 15d-PGJ2 pre-exposure reduced the magnitude and number of neuronal responses to AITC, but not CAP. AITC responses were not reduced when neurons were pre-exposed to 15d-PGJ2 combined with HC-030031 (TRPA1 antagonist), demonstrating that inhibitory effects of 15d-PGJ2 depend on TRPA1 activation. Single daily doses of 15d-PGJ2, administered during the course of 4 days in the CFA model, effectively reversed mechanical hypersensitivity without apparent tolerance or toxicity. CONCLUSIONS: Taken together, our data support the hypothesis that 15d-PGJ2 induces activation followed by persistent inhibition of TRPA1 channels in DRG sensory neurons in vitro and in vivo. Moreover, we demonstrate novel evidence that 15d-PGJ2 is analgesic in mouse models of pain via a TRPA1-dependent mechanism. Collectively, our studies support that TRPA1 agonists may be useful as pain therapeutics.


Assuntos
Nociceptividade/efeitos dos fármacos , Prostaglandinas/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo , Animais , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Masculino , Camundongos , Camundongos Knockout , Mostardeira , Óleos de Plantas/farmacologia , Prostaglandina D2/análogos & derivados , Prostaglandina D2/farmacologia , Canal de Cátion TRPA1 , Canais de Potencial de Receptor Transitório/genética
20.
Curr Pharm Biotechnol ; 12(10): 1689-97, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21466445

RESUMO

Acute pain detection is vital to navigate and survive in one's environment. Protection and preservation occur because primary afferent nociceptors transduce adverse environmental stimuli into electrical impulses that are transmitted to and interpreted within high levels of the central nervous system. Therefore, it is critical that the molecular mechanisms that convert noxious information into neural signals be identified, and their specific functional roles delineated in both acute and chronic pain settings. The Transient Receptor Potential (TRP) channel family member TRP ankyrin 1 (TRPA1) is an excellent candidate molecule to explore and intricately understand how single channel properties can tailor behavioral nociceptive responses. TRPA1 appears to dynamically respond to an amazingly wide range of diverse stimuli that include apparently unrelated modalities such as mechanical, chemical and thermal stimuli that activate somatosensory neurons. How such dissimilar stimuli activate TRPA1, yet result in modality-specific signals to the CNS is unclear. Furthermore, TRPA1 is also involved in persistent to chronic painful states such as inflammation, neuropathic pain, diabetes, fibromyalgia, bronchitis and emphysema. Yet how TRPA1's role changes from an acute sensor of physical stimuli to its contribution to these diseases that are concomitant with implacable, chronic pain is unknown. TRPA1's involvement in the nociceptive machinery that relays the adverse stimuli during painful disease states is of considerable interest for drug delivery and design by many pharmaceutical entities. In this review, we will assess the current knowledge base of TRPA1 in acute nociception and persistent inflammatory pain states, and explore its potential as a therapeutic pharmacological target in chronic pervasive conditions such neuropathic pain, persistent inflammation and diabetes.


Assuntos
Canais de Cálcio/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Dor/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo , Animais , Temperatura Baixa , Humanos , Inflamação/metabolismo , Neurônios/metabolismo , Estresse Mecânico , Canal de Cátion TRPA1 , Traumatismos do Sistema Nervoso/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA