Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Brain ; 145(10): 3654-3665, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-36130310

RESUMO

It is unclear why exactly gliomas show preferential occurrence in certain brain areas. Increased spiking activity around gliomas leads to faster tumour growth in animal models, while higher non-invasively measured brain activity is related to shorter survival in patients. However, it is unknown how regional intrinsic brain activity, as measured in healthy controls, relates to glioma occurrence. We first investigated whether gliomas occur more frequently in regions with intrinsically higher brain activity. Second, we explored whether intrinsic cortical activity at individual patients' tumour locations relates to tumour and patient characteristics. Across three cross-sectional cohorts, 413 patients were included. Individual tumour masks were created. Intrinsic regional brain activity was assessed through resting-state magnetoencephalography acquired in healthy controls and source-localized to 210 cortical brain regions. Brain activity was operationalized as: (i) broadband power; and (ii) offset of the aperiodic component of the power spectrum, which both reflect neuronal spiking of the underlying neuronal population. We additionally assessed (iii) the slope of the aperiodic component of the power spectrum, which is thought to reflect the neuronal excitation/inhibition ratio. First, correlation coefficients were calculated between group-level regional glioma occurrence, as obtained by concatenating tumour masks across patients, and group-averaged regional intrinsic brain activity. Second, intrinsic brain activity at specific tumour locations was calculated by overlaying patients' individual tumour masks with regional intrinsic brain activity of the controls and was associated with tumour and patient characteristics. As proposed, glioma preferentially occurred in brain regions characterized by higher intrinsic brain activity in controls as reflected by higher offset. Second, intrinsic brain activity at patients' individual tumour locations differed according to glioma subtype and performance status: the most malignant isocitrate dehydrogenase-wild-type glioblastoma patients had the lowest excitation/inhibition ratio at their individual tumour locations as compared to isocitrate dehydrogenase-mutant, 1p/19q-codeleted glioma patients, while a lower excitation/inhibition ratio related to poorer Karnofsky Performance Status, particularly in codeleted glioma patients. In conclusion, gliomas more frequently occur in cortical brain regions with intrinsically higher activity levels, suggesting that more active regions are more vulnerable to glioma development. Moreover, indices of healthy, intrinsic excitation/inhibition ratio at patients' individual tumour locations may capture both tumour biology and patients' performance status. These findings contribute to our understanding of the complex and bidirectional relationship between normal brain functioning and glioma growth, which is at the core of the relatively new field of 'cancer neuroscience'.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Isocitrato Desidrogenase/genética , Neoplasias Encefálicas/patologia , Estudos Transversais , Mutação , Glioma/patologia , Encéfalo/patologia
3.
Clin Neurophysiol ; 141: 126-138, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-33875376

RESUMO

OBJECTIVE: To assess the utility of interictal magnetic and electric source imaging (MSI and ESI) using dipole clustering in magnetic resonance imaging (MRI)-negative patients with drug resistant epilepsy (DRE). METHODS: We localized spikes in low-density (LD-EEG) and high-density (HD-EEG) electroencephalography as well as magnetoencephalography (MEG) recordings using dipoles from 11 pediatric patients. We computed each dipole's level of clustering and used it to discriminate between clustered and scattered dipoles. For each dipole, we computed the distance from seizure onset zone (SOZ) and irritative zone (IZ) defined by intracranial EEG. Finally, we assessed whether dipoles proximity to resection was predictive of outcome. RESULTS: LD-EEG had lower clusterness compared to HD-EEG and MEG (p < 0.05). For all modalities, clustered dipoles showed higher proximity to SOZ and IZ than scattered (p < 0.001). Resection percentage was higher in optimal vs. suboptimal outcome patients (p < 0.001); their proximity to resection was correlated to outcome (p < 0.001). No difference in resection percentage was seen for scattered dipoles between groups. CONCLUSION: MSI and ESI dipole clustering helps to localize the SOZ and IZ and facilitate the prognostic assessment of MRI-negative patients with DRE. SIGNIFICANCE: Assessing the MSI and ESI clustering allows recognizing epileptogenic areas whose removal is associated with optimal outcome.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsia , Criança , Análise por Conglomerados , Epilepsia Resistente a Medicamentos/diagnóstico por imagem , Epilepsia Resistente a Medicamentos/cirurgia , Eletrocorticografia/métodos , Eletroencefalografia/métodos , Epilepsia/diagnóstico por imagem , Epilepsia/patologia , Epilepsia/cirurgia , Humanos , Imageamento por Ressonância Magnética , Magnetoencefalografia/métodos , Convulsões/cirurgia
4.
J Neuroimaging ; 32(2): 292-299, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34964194

RESUMO

BACKGROUND AND PURPOSE: MRI has a crucial role in presurgical evaluation of drug-resistant focal epilepsy patients. Whether and how much 7T MRI further improves presurgical diagnosis compared to standard of care 3T MRI remains to be established. We investigate the added value 7T MRI offers in surgical candidates with remaining clinical uncertainty after 3T MRI. METHODS: 7T brain MRI was obtained on sequential patients with drug-resistant focal epilepsy undergoing presurgical evaluation at a comprehensive epilepsy center, including patients with and without suspected lesions on standard 3T MRI. Clinical information and 3T images informed the interpretation of 7T images. Detection of a new lesion on 7T or better characterization of a suspected lesion was considered to add value to the presurgical workup. RESULTS: Interpretable 7T MRI was acquired in 19 patients. 7T MRI identified a lesion relevant to the seizures in three of eight patients (38%) without a lesion on 3T MRI; no lesion in 7/11 patients (64%) with at least one suspected lesion on 3T MRI, contributing to the final classification of all seven as nonlesional; and confirmed and better characterized the lesion suspected at 3T MR in the remaining 4/11 patients. CONCLUSIONS: 7T MRI detected new lesions in over a third of 3T MRI nonlesional patients, confirmed and better characterized a 3T suspected lesion in one third of patients, and helped exclude a 3T suspected lesion in the remainder. Our initial experience suggests that 7T MRI adds value to surgical planning by improving detection and characterization of suspected brain lesions in drug-resistant focal epilepsy patients.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsia , Tomada de Decisão Clínica , Epilepsia Resistente a Medicamentos/diagnóstico por imagem , Epilepsia Resistente a Medicamentos/cirurgia , Humanos , Imageamento por Ressonância Magnética/métodos , Incerteza
5.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 408-411, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34891320

RESUMO

Children with medically refractory epilepsy (MRE) require resective neurosurgery to achieve seizure freedom, whose success depends on accurate delineation of the epileptogenic zone (EZ). Functional connectivity (FC) can assess the extent of epileptic brain networks since intracranial EEG (icEEG) studies have shown its link to the EZ and predictive value for surgical outcome in these patients. Here, we propose a new noninvasive method based on magnetoencephalography (MEG) and high-density (HD-EEG) data that estimates FC metrics at the source level through an "implantation" of virtual sensors (VSs). We analyzed MEG, HD-EEG, and icEEG data from eight children with MRE who underwent surgery having good outcome and performed source localization (beamformer) on noninvasive data to build VSs at the icEEG electrode locations. We analyzed data with and without Interictal Epileptiform Discharges (IEDs) in different frequency bands, and computed the following FC matrices: Amplitude Envelope Correlation (AEC), Correlation (CORR), and Phase Locking Value (PLV). Each matrix was used to generate a graph using Minimum Spanning Tree (MST), and for each node (i.e., each sensor) we computed four centrality measures: betweenness, closeness, degree, and eigenvector. We tested the reliability of VSs measures with respect to icEEG (regarded as benchmark) via linear correlation, and compared FC values inside vs. outside resection. We observed higher FC inside than outside resection (p<0.05) for AEC [alpha (8-12 Hz), beta (12-30 Hz), and broadband (1-50 Hz)] on data with IEDs and AEC theta (4-8 Hz) on data without IEDs for icEEG, AEC broadband (1-50 Hz) on data without IEDs for MEG-VSs, as well as for all centrality measures of icEEG and MEG/HD-EEG-VSs. Additionally, icEEG and VSs metrics presented high correlation (0.6-0.9, p<0.05). Our data support the notion that the proposed method can potentially replicate the icEEG ability to map the epileptogenic network in children with MRE.Clinical Relevance - The estimation of FC with noninvasive techniques, such as MEG and HD-EEG, via VSs is a promising tool that would help the presurgical evaluation by delineating the EZ without waiting for a seizure to occur, and potentially improve the surgical outcome of patients with MRE undergoing surgery.


Assuntos
Mapeamento Encefálico , Epilepsia Resistente a Medicamentos , Criança , Epilepsia Resistente a Medicamentos/cirurgia , Eletrocorticografia , Humanos , Magnetoencefalografia , Reprodutibilidade dos Testes
6.
Ann Clin Transl Neurol ; 7(3): 329-342, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32096612

RESUMO

OBJECTIVE: To assess the ability of high-density Electroencephalography (HD-EEG) and magnetoencephalography (MEG) to localize interictal ripples, distinguish between ripples co-occurring with spikes (ripples-on-spike) and independent from spikes (ripples-alone), and evaluate their localizing value as biomarkers of epileptogenicity in children with medically refractory epilepsy. METHODS: We retrospectively studied 20 children who underwent epilepsy surgery. We identified ripples on HD-EEG and MEG data, localized their generators, and compared them with intracranial EEG (icEEG) ripples. When ripples and spikes co-occurred, we performed source imaging distinctly on the data above 80 Hz (to localize ripples) and below 70 Hz (to localize spikes). We assessed whether missed resection of ripple sources predicted poor outcome, separately for ripples-on-spikes and ripples-alone. Similarly, predictive value of spikes was calculated. RESULTS: We observed scalp ripples in 16 patients (10 good outcome). Ripple sources were highly concordant to the icEEG ripples (HD-EEG concordance: 79%; MEG: 83%). When ripples and spikes co-occurred, their sources were spatially distinct in 83-84% of the cases. Removing the sources of ripples-on-spikes predicted good outcome with 90% accuracy for HD-EEG (P = 0.008) and 86% for MEG (P = 0.044). Conversely, removing ripples-alone did not predict outcome. Resection of spike sources (generated at the same time as ripples) predicted good outcome for HD-EEG (P = 0.036; accuracy = 87%), while did not reach significance for MEG (P = 0.1; accuracy = 80%). INTERPRETATION: HD-EEG and MEG localize interictal ripples with high precision in children with refractory epilepsy. Scalp ripples-on-spikes are prognostic, noninvasive biomarkers of epileptogenicity, since removing their cortical generators predicts good outcome. Conversely, scalp ripples-alone are most likely generated by non-epileptogenic areas.


Assuntos
Epilepsia Resistente a Medicamentos/diagnóstico , Epilepsia Resistente a Medicamentos/cirurgia , Eletroencefalografia/normas , Magnetoencefalografia/normas , Procedimentos Neurocirúrgicos/normas , Avaliação de Resultados em Cuidados de Saúde/normas , Adolescente , Biomarcadores , Ondas Encefálicas/fisiologia , Criança , Epilepsia Resistente a Medicamentos/fisiopatologia , Eletrocorticografia/normas , Feminino , Humanos , Lactente , Masculino , Valor Preditivo dos Testes , Prognóstico , Estudos Retrospectivos , Couro Cabeludo
7.
Radiology ; 294(3): 622-627, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31961245

RESUMO

Background Although most patients with medically refractory temporal lobe epilepsy (TLE) experience seizure freedom after anterior temporal lobectomy, approximately 40% may continue to have seizures. Functional network integration, as measured with preoperative resting-state functional MRI, may help stratify patients who are more likely to experience postoperative seizure freedom. Purpose To relate preoperative resting-state functional MRI and surgical outcome in patients with medically refractory TLE. Materials and Methods Data from patients with medically intractable TLE were retrospectively analyzed. Patients underwent preoperative resting-state functional MRI between March 2010 and April 2013 and subsequent unilateral anterior temporal lobectomy. Postoperative seizure-free status was categorized using the Engel Epilepsy Surgery Outcome Scale. Global and regional resting-state functional MRI network properties on preoperative functional MRI scans related to integration were calculated and statistically compared between patients who experienced complete postoperative seizure freedom (Engel class IA) and all others (Engel class IB to class IV) using t tests and multiple logistic regression. Results Forty patients (mean age, 34 years ± 15 [standard deviation]; 21 female) were evaluated. Preoperative global network integration was different (P = .01) between patients who experienced seizure freedom after surgery and all other patients, with 9% lower leaf fraction and 10% lower tree hierarchy in patients with ongoing seizures. Preoperative regional network integration in the contralateral temporoinsular region was different (P = .04) between patients in these two groups. Specifically, the group-level leaf proportion was 59% lower in the entorhinal cortex, 73% lower in the inferior temporal gyrus, 43% lower in the temporal pole, and 69% lower in the insula in patients with ongoing seizures after surgery. When using multivariate regression, contralateral temporoinsular leaf proportion (P = .002) and epilepsy duration (P = .04) were predictive of postoperative seizure freedom, while age (P > .70) and age at seizure onset (P > .50) were not. Conclusion Lower network integration globally and involving the contralateral temporoinsular cortex on preoperative resting-state functional MRI scans is associated with ongoing postoperative seizures in patients with temporal lobe epilepsy. © RSNA, 2020.


Assuntos
Encéfalo , Epilepsia do Lobo Temporal , Imageamento por Ressonância Magnética , Descanso/fisiologia , Adulto , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Epilepsia do Lobo Temporal/diagnóstico por imagem , Epilepsia do Lobo Temporal/fisiopatologia , Epilepsia do Lobo Temporal/cirurgia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Período Pré-Operatório , Estudos Retrospectivos , Resultado do Tratamento , Adulto Jovem
8.
Clin Neurophysiol ; 130(4): 491-504, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30771726

RESUMO

OBJECTIVE: To evaluate the accuracy and clinical utility of conventional 21-channel EEG (conv-EEG), 72-channel high-density EEG (HD-EEG) and 306-channel MEG in localizing interictal epileptiform discharges (IEDs). METHODS: Twenty-four children who underwent epilepsy surgery were studied. IEDs on conv-EEG, HD-EEG, MEG and intracranial EEG (iEEG) were localized using equivalent current dipoles and dynamical statistical parametric mapping (dSPM). We compared the localization error (ELoc) with respect to the ground-truth Irritative Zone (IZ), defined by iEEG sources, between non-invasive modalities and the distance from resection (Dres) between good- (Engel 1) and poor-outcomes. For each patient, we estimated the resection percentage of IED sources and tested whether it predicted outcome. RESULTS: MEG presented lower ELoc than HD-EEG and conv-EEG. For all modalities, Dres was shorter in good-outcome than poor-outcome patients, but only the resection percentage of the ground-truth IZ and MEG-IZ predicted surgical outcome. CONCLUSIONS: MEG localizes the IZ more accurately than conv-EEG and HD-EEG. MSI may help the presurgical evaluation in terms of patient's outcome prediction. The promising clinical value of ESI for both conv-EEG and HD-EEG prompts the use of higher-density EEG-systems to possibly achieve MEG performance. SIGNIFICANCE: Localizing the IZ non-invasively with MSI/ESI facilitates presurgical evaluation and surgical prognosis assessment.


Assuntos
Eletroencefalografia/métodos , Epilepsia/diagnóstico , Magnetoencefalografia/métodos , Adolescente , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/fisiopatologia , Criança , Pré-Escolar , Excitabilidade Cortical , Eletroencefalografia/normas , Epilepsia/fisiopatologia , Epilepsia/cirurgia , Feminino , Humanos , Lactente , Imageamento por Ressonância Magnética , Magnetoencefalografia/normas , Masculino , Reprodutibilidade dos Testes
9.
Annu Int Conf IEEE Eng Med Biol Soc ; 2019: 1555-1558, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31946191

RESUMO

INTRODUCTION: Patients with medically refractory epilepsy (MRE) need surgical resection of the epileptogenic zone (EZ) to gain seizure-freedom. High-frequency oscillations (HFOs, > 80 Hz) are promising biomarkers of the EZ that are typically localized using intracranial electroencephalography (icEEG). The goal of this study was to localize the cortical generators of HFOs non-invasively using high-density (HD) EEG and magnetoencephalography (MEG) and validate the localization against the gold-standard given by the icEEGdefined HFO-zone. METHODS: We analyzed simultaneous HDEEG and MEG data from six children with MRE who underwent icEEG and surgery. We detected interictal HFOs (80-160 Hz) on HD-EEG and MEG separately, using an inhouse automatic detector followed by visual human review, and distinguished between HFOs with and without spikes. We localized the cortical generators of each HFO on HD-EEG or MEG using the wavelet Maximum Entropy on the Mean (wMEM). For the HFOs localized in the brain area covered by icEEG, we estimated the localization error (Eloc) with respect to the gold-standard, and classified them as either concordant (Eloc≤15mm) or not. RESULTS: We found that: (i) HD-EEG presented a higher rate of HFOs than MEG (1 vs 0.5 HFOs/min, p=0.031); (ii) HFOs without spikes were more likely to be localized outside the brain regions of interest (i.e. covered by icEEG) than HFOs with spikes; and (iii) both HD-EEG and MEG showed high precision to the gold-standard (92% and 96%). CONCLUSION: We reported quantitative evidence that HDEEG and MEG can localize the HFO cortical generators with high precision to the icEEG gold-standard in children with MRE, suggesting that they may possibly limit the need for icEEG prior to surgery. We also showed that HFOs with spikes on HD-EEG/MEG are more likely to be epileptogenic than those independent from spikes, which may represent physiological events from normal brain.


Assuntos
Eletroencefalografia , Epilepsia , Magnetoencefalografia , Criança , Eletrocorticografia , Epilepsia/diagnóstico , Epilepsia/fisiopatologia , Humanos
10.
Pediatr Neurol ; 83: 25-31, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29685607

RESUMO

BACKGROUND: The purpose of this study is to clarify the source distribution patterns of magnetoencephalographic spikes correlated with postsurgical seizure-free outcome in pediatric patients with focal cortical dysplasia. PATIENTS AND METHODS: Thirty-two patients with pathologically confirmed focal cortical dysplasia were divided into seizure-free and seizure-persistent groups according to their surgical outcomes based on Engel classification. In each patient, presurgical magnetoencephalography was reviewed. Dipole sources of magnetoencephalographic spikes were calculated according to a single dipole model. We obtained the following quantitative indices for evaluating dipole distribution: maximum distance over all pairs of dipoles, standard deviation of the distances between each dipole and the mean coordinate of all dipoles, average nearest neighbor distance, the rate of dipoles located within 10, 20, and 30 mm from the mean coordinate, and the rate of dipoles included in the resection. These indices were compared between the two patient groups. RESULTS: Average nearest neighbor distance was significantly smaller in the seizure-free group than in the seizure-persistent group (P = 0.008). The rates of dipoles located within 10, 20, and 30 mm from the mean coordinate were significantly higher in the seizure-free group (P = 0.001, 0.001, 0.005, respectively). The maximum distance, standard deviation, and resection rate of dipoles did not show a significant difference between the two groups. CONCLUSIONS: A spatially restricted dipole distribution of magnetoencephalographic spikes is correlated with postsurgical seizure-free outcomes in patients with focal cortical dysplasia. The distribution can be assessed by quantitative indices that are clinically useful in the presurgical evaluation of these patients.


Assuntos
Fenômenos Eletrofisiológicos/fisiologia , Epilepsia/fisiopatologia , Epilepsia/cirurgia , Magnetoencefalografia/métodos , Malformações do Desenvolvimento Cortical/fisiopatologia , Malformações do Desenvolvimento Cortical/cirurgia , Avaliação de Resultados em Cuidados de Saúde , Adolescente , Criança , Pré-Escolar , Epilepsia/etiologia , Feminino , Humanos , Lactente , Masculino , Malformações do Desenvolvimento Cortical/complicações , Estudos Retrospectivos
11.
Int J Comput Assist Radiol Surg ; 12(10): 1829-1837, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27915398

RESUMO

PURPOSE: Existing methods for sorting, labeling, registering, and across-subject localization of electrodes in intracranial encephalography (iEEG) may involve laborious work requiring manual inspection of radiological images. METHODS: We describe a new open-source software package, the interactive electrode localization utility which presents a full pipeline for the registration, localization, and labeling of iEEG electrodes from CT and MR images. In addition, we describe a method to automatically sort and label electrodes from subdural grids of known geometry. RESULTS: We validated our software against manual inspection methods in twelve subjects undergoing iEEG for medically intractable epilepsy. Our algorithm for sorting and labeling performed correct identification on 96% of the electrodes. CONCLUSIONS: The sorting and labeling methods we describe offer nearly perfect performance and the software package we have distributed may simplify the process of registering, sorting, labeling, and localizing subdural iEEG grid electrodes by manual inspection.


Assuntos
Encéfalo/diagnóstico por imagem , Eletrodos Implantados , Eletroencefalografia/instrumentação , Epilepsia/diagnóstico , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Tomografia Computadorizada por Raios X/métodos , Algoritmos , Humanos , Curva ROC , Software
12.
Radiology ; 281(1): 264-9, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27467465

RESUMO

Purpose To measure the accuracy of resting-state functional magnetic resonance (MR) imaging in determining hemispheric language dominance in patients with medically intractable focal epilepsies against the results of an intracarotid amobarbital procedure (IAP). Materials and Methods This study was approved by the institutional review board, and all subjects gave signed informed consent. Data in 23 patients with medically intractable focal epilepsy were retrospectively analyzed. All 23 patients were candidates for epilepsy surgery and underwent both IAP and resting-state functional MR imaging as part of presurgical evaluation. Language dominance was determined from functional MR imaging data by calculating a laterality index (LI) after using independent component analysis. The accuracy of this method was assessed against that of IAP by using a variety of thresholds. Sensitivity and specificity were calculated by using leave-one-out cross validation. Spatial maps of language components were qualitatively compared among each hemispheric language dominance group. Results Measurement of hemispheric language dominance with resting-state functional MR imaging was highly concordant with IAP results, with up to 96% (22 of 23) accuracy, 96% (22 of 23) sensitivity, and 96% (22 of 23) specificity. Composite language component maps in patients with typical language laterality consistently included classic language areas such as the inferior frontal gyrus, the posterior superior temporal gyrus, and the inferior parietal lobule, while those of patients with atypical language laterality also included non-classical language areas such as the superior and middle frontal gyri, the insula, and the occipital cortex. Conclusion Resting-state functional MR imaging can be used to measure language laterality in patients with medically intractable focal epilepsy. (©) RSNA, 2016 Online supplemental material is available for this article.


Assuntos
Epilepsia Resistente a Medicamentos/diagnóstico por imagem , Epilepsia Resistente a Medicamentos/fisiopatologia , Lateralidade Funcional , Idioma , Imageamento por Ressonância Magnética/métodos , Adolescente , Adulto , Amobarbital , Criança , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Sensibilidade e Especificidade
13.
Top Magn Reson Imaging ; 25(1): 19-24, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26848557

RESUMO

Resting-state functional magnetic resonance imaging (resting-state fMRI) is a tool for investigating the functional networks that arise during the resting state of the brain. Recent advances of the resting-state fMRI analysis suggest its feasibility for evaluating language function. The most common clinical application is for presurgical mapping of cortex for a brain tumor or for resective epilespy surgery. In this article, we review the techniques and presurgical applications of resting-state fMRI analysis for language evaluation, and discuss the use in the clinical setting, focusing on planning for neurosurgery.


Assuntos
Córtex Cerebral/fisiopatologia , Estimulação Elétrica/métodos , Epilepsia/diagnóstico , Epilepsia/cirurgia , Idioma , Imageamento por Ressonância Magnética/métodos , Córtex Cerebral/cirurgia , Conectoma/métodos , Epilepsia/fisiopatologia , Humanos , Monitorização Neurofisiológica Intraoperatória/métodos , Cuidados Pré-Operatórios/métodos , Descanso
14.
BMC Neurol ; 15: 262, 2015 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-26689596

RESUMO

BACKGROUND: Epilepsy is one of the most prevalent neurological disorders. It remains medically intractable for about one-third of patients with focal epilepsy, for whom precise localization of the epileptogenic zone responsible for seizure initiation may be critical for successful surgery. Existing fMRI literature points to widespread network disturbances in functional connectivity. Per previous scalp and intracranial EEG studies and consistent with excessive local synchronization during interictal discharges, we hypothesized that, relative to same regions in healthy controls, epileptogenic foci would exhibit less chaotic dynamics, identifiable via entropic analyses of resting state fMRI time series. METHODS: In order to first validate this hypothesis on a cohort of patients with known ground truth, here we test individuals with well-defined epileptogenic foci (left mesial temporal lobe epilepsy). We analyzed voxel-wise resting-state fMRI time-series using the autocorrelation function (ACF), an entropic measure of regulation and feedback, and performed follow-up seed-to-voxel functional connectivity analysis. Disruptions in connectivity of the region exhibiting abnormal dynamics were examined in relation to duration of epilepsy and patients' cognitive performance using a delayed verbal memory recall task. RESULTS: ACF analysis revealed constrained (less chaotic) functional dynamics in left temporal lobe epilepsy patients, primarily localized to ipsilateral temporal pole, proximal to presumed focal points. Autocorrelation decay rates differentiated, with 100 % accuracy, between patients and healthy controls on a subject-by-subject basis within a leave-one-subject out classification framework. Regions identified via ACF analysis formed a less efficient network in patients, as compared to controls. Constrained dynamics were linked with locally increased and long-range decreased connectivity that, in turn, correlated significantly with impaired memory (local left temporal connectivity) and epilepsy duration (left temporal - posterior cingulate cortex connectivity). CONCLUSIONS: Our current results suggest that data driven functional MRI methods that target network dynamics hold promise in providing clinically valuable tools for identification of epileptic regions.


Assuntos
Encéfalo/patologia , Epilepsia do Lobo Temporal/patologia , Imageamento por Ressonância Magnética , Adulto , Mapeamento Encefálico , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
15.
Transl Oncol ; 8(3): 137-46, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26055170

RESUMO

OBJECTIVES: This study evaluates the repeatability of brain perfusion using dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI) with a variety of post-processing methods. METHODS: Thirty-two patients with newly diagnosed glioblastoma were recruited. On a 3-T MRI using a dual-echo, gradient-echo spin-echo DSC-MRI protocol, the patients were scanned twice 1 to 5 days apart. Perfusion maps including cerebral blood volume (CBV) and cerebral blood flow (CBF) were generated using two contrast agent leakage correction methods, along with testing normalization to reference tissue, and application of arterial input function (AIF). Repeatability of CBV and CBF within tumor regions and healthy tissues, identified by structural images, was assessed with intra-class correlation coefficients (ICCs) and repeatability coefficients (RCs). Coefficients of variation (CVs) were reported for selected methods. RESULTS: CBV and CBF were highly repeatable within tumor with ICC values up to 0.97. However, both CBV and CBF showed lower ICCs for healthy cortical tissues (up to 0.83), healthy gray matter (up to 0.95), and healthy white matter (WM; up to 0.93). The values of CV ranged from 6% to 10% in tumor and 3% to 11% in healthy tissues. The values of RC relative to the mean value of measurement within healthy WM ranged from 22% to 42% in tumor and 7% to 43% in healthy tissues. These percentages show how much variation in perfusion parameter, relative to that in healthy WM, we expect to observe to consider it statistically significant. We also found that normalization improved repeatability, but AIF deconvolution did not. CONCLUSIONS: DSC-MRI is highly repeatable in high-grade glioma patients.

16.
Front Hum Neurosci ; 8: 62, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24574999

RESUMO

Magnetoencephalography (MEG), which acquires neuromagnetic fields in the brain, is a useful diagnostic tool in presurgical evaluation of epilepsy. Previous studies have shown that MEG affects the planning intracranial electroencephalography placement and correlates with surgical outcomes by using a single dipole model. Spatiotemporal source analysis using distributed source models is an advanced method for analyzing MEG, and has been recently introduced for analyzing epileptic spikes. It has advantages over the conventional single dipole analysis for obtaining accurate sources and understanding the propagation of epileptic spikes. In this article, we review the source analysis methods, describe the techniques of the distributed source analysis, interpretation of source distribution maps, and discuss the benefits and feasibility of this method in evaluation of epilepsy.

17.
Epilepsy Res ; 108(2): 280-8, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24315019

RESUMO

OBJECTIVE: To investigate the correlation between spike propagation represented by spatiotemporal source analysis of magnetoencephalographic (MEG) spikes and surgical outcome in patients with temporal lobe epilepsy. METHODS: Thirty-seven patients were divided into mesial (n=27) and non-mesial (n=10) groups based on the presurgical evaluation. In each patient, ten ipsilateral spikes were averaged, and spatiotemporal source maps of the averaged spike were obtained by using minimum norm estimate. Regions of interest (ROIs) were created including temporoparietal, inferior frontal, mesial temporal, anterior and posterior part of the lateral temporal cortex. We extracted activation values from the source maps and the threshold was set at half of the maximum activation at the peak latency. The leading and propagated areas of the spike were defined as those ROIs with activation reaching the threshold at the earliest and at the peak latencies, respectively. Surgical outcome was assessed based on Engel's classification. Binary variables were created from leading areas (restricted to the anterior and mesial temporal ROIs or not) and from propagation areas (involving the temporoparietal ROI or not), and for surgical outcome (Class I or not). Fisher's exact test was used for significance testing. RESULTS: In total and mesial group, restricted anterior/mesial temporal leading areas were correlated with Class I (p<0.05). Temporoparietal propagation was correlated with Class II-IV (p<0.05). For the non-mesial group, no significant relation was found. CONCLUSIONS: Spike propagation patterns represented by spatiotemporal source analysis of MEG spikes may provide useful information for prognostic implication in presurgical evaluation of epilepsy.


Assuntos
Potenciais de Ação/fisiologia , Epilepsia do Lobo Temporal/diagnóstico , Epilepsia do Lobo Temporal/cirurgia , Magnetoencefalografia/métodos , Adolescente , Adulto , Idoso , Eletroencefalografia/métodos , Epilepsia do Lobo Temporal/fisiopatologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Fatores de Tempo , Resultado do Tratamento , Adulto Jovem
18.
Epilepsy Res ; 104(1-2): 125-33, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23092910

RESUMO

INTRODUCTION: Tuberous sclerosis complex (TSC) is a multisystem genetic disorder affecting multiple organs, including the brain, and very often associated with epileptic activity. Language acquisition and development seems to be altered in a significant proportion of patients with TSC. In the present study, we used magnetoencephalography (MEG) to investigate spatiotemporal cerebral language processing in subjects with TSC and epilepsy during a reading semantic decision task, compared to healthy control participants. METHODS: Fifteen patients with TSC and 31 healthy subjects performed a lexico-semantic decision task during MEG recording. Minimum-norm estimates (MNE) were computed allowing identification of cerebral generators of language evoked fields (EF) in each subject. RESULTS: Source analysis of the language EF demonstrated early bilateral medial occipital activation (125ms) followed by a fusiform gyrus activation around 135ms. At 270ms post stimuli presentation, a strong cerebral activation was recorded in the left basal temporal language area. Finally, cerebral activations were measured in Wernicke's area followed by Broca's area. The healthy control group showed larger and earlier language activations in Broca and Wernicke's areas compared to TSC patients. Moreover, cerebral activation from Broca's area was greater than activation from Wernicke's area in both groups, but this difference between anterior and posterior regions was smaller in the TSC group. Finally, the activation latency difference between Broca and Wernicke's areas was greater in healthy controls than in TSC patients, which shows that activations in these areas are more serial in control subjects compared to TSC patients in whom activations occur more simultaneously. CONCLUSIONS: This is the first study to investigate cerebral language pattern in patients with TSC. Compared to healthy controls, atypical neuromagnetic language responses may reflect cerebral reorganization in these patients in response to early epileptogenic activity or presence at birth of multiple brain lesions.


Assuntos
Córtex Cerebral/fisiologia , Idioma , Leitura , Esclerose Tuberosa/diagnóstico , Esclerose Tuberosa/fisiopatologia , Adulto , Feminino , Humanos , Magnetoencefalografia/métodos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
19.
Epilepsy Behav ; 25(1): 36-41, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22980079

RESUMO

Nearly 90% of patients with tuberous sclerosis complex (TSC) have epilepsy. Epilepsy surgery can be considered, which often requires a presurgical assessment of language lateralization. This is the first study to investigate language lateralization in TSC patients using magnetoencephalography. Fifteen patients performed a language task during magnetoencephalography recording. Cerebral generators of language-evoked fields (EF) were identified in each patient. Laterality indices (LI) were computed using magnetoencephalography data extracted from the inferior frontal as well as middle and superior temporal gyri from both hemispheres between 250 and 550 ms. Source analysis demonstrated a fusiform gyrus activation, followed by an activation located in the basal temporal language area and middle and superior temporal gyri responses, ending with an inferior frontal activation. Eleven patients (73.3%) had left-hemisphere language dominance, whereas four patients (26.7%) showed a bilateral language pattern, which was associated with a history of epilepsy and presence of tubers in language-related areas.


Assuntos
Córtex Cerebral/fisiopatologia , Epilepsia/complicações , Lateralidade Funcional/fisiologia , Transtornos da Linguagem/etiologia , Esclerose Tuberosa/complicações , Adolescente , Adulto , Epilepsia/epidemiologia , Feminino , Humanos , Transtornos da Linguagem/patologia , Imageamento por Ressonância Magnética , Magnetoencefalografia , Masculino , Pessoa de Meia-Idade , Esclerose Tuberosa/epidemiologia
20.
Neurosurg Clin N Am ; 22(2): 153-67, vii-viii, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21435568

RESUMO

Noninvasive neuroimaging aids in surgical planning and in counseling patients about possible risks of surgery. Magnetoencephalography (MEG) performs the most common types of surgical planning that the neurosurgeon faces, including localization of epileptic discharges, determination of the hemispheric dominance of verbal processing, and the ability to locate eloquent cortex. MEG is most useful when it is combined with structural imaging, most commonly with structural magnetic resonance (MR) imaging and MR diffusion imaging. This article reviews the history of clinical MEG, introduces the basic concepts about the biophysics of MEG, and outlines the basic neurosurgical applications of MEG.


Assuntos
Magnetoencefalografia/métodos , Neurocirurgia/métodos , Procedimentos Neurocirúrgicos/métodos , Amobarbital/administração & dosagem , Biofísica , Artérias Carótidas , Córtex Cerebral/anatomia & histologia , Epilepsia/cirurgia , História do Século XX , Humanos , Hipnóticos e Sedativos/administração & dosagem , Interpretação de Imagem Assistida por Computador , Injeções Intra-Arteriais , Magnetoencefalografia/história , Magnetoencefalografia/instrumentação , Córtex Motor/anatomia & histologia , Córtex Motor/fisiologia , Neuronavegação/métodos , Testes Neuropsicológicos , Córtex Visual/anatomia & histologia , Córtex Visual/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA