Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 9(35): eade7486, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37656784

RESUMO

In-frame BRAF exon 12 deletions are increasingly identified in various tumor types. The resultant BRAFΔß3-αC oncoproteins usually lack five amino acids in the ß3-αC helix linker and sometimes contain de novo insertions. The dimerization status of BRAFΔß3-αC oncoproteins, their precise pathomechanism, and their direct druggability by RAF inhibitors (RAFi) has been under debate. Here, we functionally characterize BRAFΔLNVTAP>F and two novel mutants, BRAFdelinsFS and BRAFΔLNVT>F, and compare them with other BRAFΔß3-αC oncoproteins. We show that BRAFΔß3-αC oncoproteins not only form stable homodimers and large multiprotein complexes but also require dimerization. Nevertheless, details matter as aromatic amino acids at the deletion junction of some BRAFΔß3-αC oncoproteins, e.g., BRAFΔLNVTAP>F, increase their stability and dimerization propensity while conferring resistance to monomer-favoring RAFi such as dabrafenib or HSP 90/CDC37 inhibition. In contrast, dimer-favoring inhibitors such as naporafenib inhibit all BRAFΔß3-αC mutants in cell lines and patient-derived organoids, suggesting that tumors driven by such oncoproteins are vulnerable to these compounds.


Assuntos
Proteínas de Choque Térmico HSP90 , Proteínas Proto-Oncogênicas B-raf , Humanos , Dimerização , Proteínas Proto-Oncogênicas B-raf/genética , Aminoácidos
2.
Proc Natl Acad Sci U S A ; 120(34): e2211281120, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37579175

RESUMO

Autophagy serves as a defense mechanism against intracellular pathogens, but several microorganisms exploit it for their own benefit. Accordingly, certain herpesviruses include autophagic membranes into their infectious virus particles. In this study, we analyzed the composition of purified virions of the Epstein-Barr virus (EBV), a common oncogenic γ-herpesvirus. In these, we found several components of the autophagy machinery, including membrane-associated LC3B-II, and numerous viral proteins, such as the capsid assembly proteins BVRF2 and BdRF1. Additionally, we showed that BVRF2 and BdRF1 interact with LC3B-II via their common protein domain. Using an EBV mutant, we identified BVRF2 as essential to assemble mature capsids and produce infectious EBV. However, BdRF1 was sufficient for the release of noninfectious viral envelopes as long as autophagy was not compromised. These data suggest that BVRF2 and BdRF1 are not only important for capsid assembly but together with the LC3B conjugation complex of ATG5-ATG12-ATG15L1 are also critical for EBV envelope release.


Assuntos
Capsídeo , Infecções por Vírus Epstein-Barr , Humanos , Capsídeo/metabolismo , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/metabolismo , Envelope Viral/metabolismo , Infecções por Vírus Epstein-Barr/metabolismo , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo
3.
Elife ; 112022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-35357307

RESUMO

The biogenesis of eukaryotic ribosomes involves the ordered assembly of around 80 ribosomal proteins. Supplying equimolar amounts of assembly-competent ribosomal proteins is complicated by their aggregation propensity and the spatial separation of their location of synthesis and pre-ribosome incorporation. Recent evidence has highlighted that dedicated chaperones protect individual, unassembled ribosomal proteins on their path to the pre-ribosomal assembly site. Here, we show that the co-translational recognition of Rpl3 and Rpl4 by their respective dedicated chaperone, Rrb1 or Acl4, reduces the degradation of the encoding RPL3 and RPL4 mRNAs in the yeast Saccharomyces cerevisiae. In both cases, negative regulation of mRNA levels occurs when the availability of the dedicated chaperone is limited and the nascent ribosomal protein is instead accessible to a regulatory machinery consisting of the nascent-polypeptide-associated complex and the Caf130-associated Ccr4-Not complex. Notably, deregulated expression of Rpl3 and Rpl4 leads to their massive aggregation and a perturbation of overall proteostasis in cells lacking the E3 ubiquitin ligase Tom1. Taken together, we have uncovered an unprecedented regulatory mechanism that adjusts the de novo synthesis of Rpl3 and Rpl4 to their actual consumption during ribosome assembly and, thereby, protects cells from the potentially detrimental effects of their surplus production.


Living cells are packed full of molecules known as proteins, which perform many vital tasks the cells need to survive and grow. Machines called ribosomes inside the cells use template molecules called messenger RNAs (or mRNAs for short) to produce proteins. The newly-made proteins then have to travel to a specific location in the cell to perform their tasks. Some newly-made proteins are prone to forming clumps, so cells have other proteins known as chaperones that ensure these clumps do not form. The ribosomes themselves are made up of several proteins, some of which are also prone to clumping as they are being produced. To prevent this from happening, cells control how many ribosomal proteins they make, so there are just enough to form the ribosomes the cell needs at any given time. Previous studies found that, in yeast, two ribosomal proteins called Rpl3 and Rpl4 each have their own dedicated chaperone to prevent them from clumping. However, it remained unclear whether these chaperones are also involved in regulating the levels of Rpl3 and Rpl4. To address this question, Pillet et al. studied both of these dedicated chaperones in yeast cells. The experiments showed that the chaperones bound to their target proteins (either units of Rpl3 or Rpl4) as they were being produced on the ribosomes. This protected the template mRNAs the ribosomes were using to produce these proteins from being destroyed, thus allowing further units of Rpl3 and Rpl4 to be produced. When enough Rpl3 and Rpl4 units were made, there were not enough of the chaperones to bind them all, leaving the mRNA templates unprotected. This led to the destruction of the mRNA templates, which decreased the numbers of Rpl3 and Rpl4 units being produced. The work of Pillet et al. reveals a feedback mechanism that allows yeast to tightly control the levels of Rpl3 and Rpl4. In the future, these findings may help us understand diseases caused by defects in ribosomal proteins, such as Diamond-Blackfan anemia, and possibly also neurodegenerative diseases caused by clumps of proteins forming in cells. The next step will be to find out whether the mechanism uncovered by Pillet et al. also exists in human and other mammalian cells.


Assuntos
Proteínas Ribossômicas , Proteínas de Saccharomyces cerevisiae , Proteostase , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
Sci Rep ; 11(1): 12242, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-34112905

RESUMO

The circadian clock regulates many biochemical and physiological pathways, and lack of clock genes, such as Period (Per) 2, affects not only circadian activity rhythms, but can also modulate feeding and mood-related behaviors. However, it is not known how cell-type specific expression of Per2 contributes to these behaviors. In this study, we find that Per2 in glial cells is important for balancing mood-related behaviors, without affecting circadian activity parameters. Genetic and adeno-associated virus-mediated deletion of Per2 in glial cells of mice leads to reduced despair and anxiety. This is paralleled by an increase of the GABA transporter 2 (Gat2/Slc6a13) and Dopamine receptor D3 (Drd3) mRNA, and a reduction of glutamate levels in the nucleus accumbens (NAc). Interestingly, neuronal Per2 knock-out also reduces despair, but does not influence anxiety. The change in mood-related behavior is not a result of a defective molecular clock, as glial Bmal1 deletion has no effect on neither despair nor anxiety. Exclusive deletion of Per2 in glia of the NAc reduced despair, but had no influence on anxiety. Our data provide strong evidence for an important role of glial Per2 in regulating mood-related behavior.


Assuntos
Afeto , Comportamento Animal , Neuroglia/metabolismo , Proteínas Circadianas Period/genética , Deleção de Sequência , Animais , Astrócitos/metabolismo , Cruzamento , Ritmo Circadiano , Dependovirus/genética , Expressão Gênica , Estudos de Associação Genética , Vetores Genéticos/genética , Camundongos , Fenótipo , Transdução Genética
5.
Plant Cell Physiol ; 62(6): 959-970, 2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34037236

RESUMO

Most land plants entertain a mutualistic symbiosis known as arbuscular mycorrhiza with fungi (Glomeromycota) that provide them with essential mineral nutrients, in particular phosphate (Pi), and protect them from biotic and abiotic stress. Arbuscular mycorrhizal (AM) symbiosis increases plant productivity and biodiversity and is therefore relevant for both natural plant communities and crop production. However, AM fungal populations suffer from intense farming practices in agricultural soils, in particular Pi fertilization. The dilemma between natural fertilization from AM symbiosis and chemical fertilization has raised major concern and emphasizes the need to better understand the mechanisms by which Pi suppresses AM symbiosis. Here, we test the hypothesis that Pi may interfere with AM symbiosis via the phytohormone gibberellic acid (GA) in the Solanaceous model systems Petunia hybrida and Nicotiana tabacum. Indeed, we find that GA is inhibitory to AM symbiosis and that Pi may cause GA levels to increase in mycorrhizal roots. Consistent with a role of endogenous GA as an inhibitor of AM development, GA-defective N. tabacum lines expressing a GA-metabolizing enzyme (GA methyltransferase-GAMT) are colonized more quickly by the AM fungus Rhizoglomus irregulare, and exogenous Pi is less effective in inhibiting AM colonization in these lines. Systematic gene expression analysis of GA-related genes reveals a complex picture, in which GA degradation by GA2 oxidase plays a prominent role. These findings reveal potential targets for crop breeding that could reduce Pi suppression of AM symbiosis, thereby reconciling the advantages of Pi fertilization with the diverse benefits of AM symbiosis.


Assuntos
Giberelinas/metabolismo , Micorrizas/fisiologia , Nicotiana/fisiologia , Petunia/fisiologia , Fosfatos/metabolismo , Regulação da Expressão Gênica de Plantas , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/microbiologia , Plantas Geneticamente Modificadas , Transdução de Sinais , Simbiose
6.
New Phytol ; 227(5): 1467-1478, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32396661

RESUMO

Pathogen effectors act as disease promoting factors that target specific host proteins with roles in plant immunity. Here, we investigated the function of the RxLR3 effector of the plant-pathogen Phytophthora brassicae. Arabidopsis plants expressing a FLAG-RxLR3 fusion protein were used for co-immunoprecipitation followed by liquid chromatography-tandem mass spectrometry to identify host targets of RxLR3. Fluorescently labelled fusion proteins were used for analysis of subcellular localisation and function of RxLR3. Three closely related members of the callose synthase family, CalS1, CalS2 and CalS3, were identified as targets of RxLR3. RxLR3 co-localised with the plasmodesmal marker protein PDLP5 (PLASMODESMATA-LOCALISED PROTEIN 5) and with plasmodesmata-associated deposits of the ß-1,3-glucan polymer callose. In line with a function as an inhibitor of plasmodesmal callose synthases (CalS) enzymes, callose depositions were reduced and cell-to-cell trafficking was promoted in the presence of RxLR3. Plasmodesmal callose deposition in response to infection was compared with wild-type suppressed in RxLR3-expressing Arabidopsis lines. Our results implied a virulence function of the RxLR3 effector as a positive regulator of plasmodesmata transport and provided evidence for competition between P. brassicae and Arabidopsis for control of cell-to-cell trafficking.


Assuntos
Phytophthora , Plasmodesmos , Glucanos , Glucosiltransferases/genética
7.
Dev Cell ; 46(2): 145-161.e10, 2018 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-30016619

RESUMO

Nrf2 is a key regulator of the antioxidant defense system, and pharmacological Nrf2 activation is a promising strategy for cancer prevention and promotion of tissue repair. Here we show, however, that activation of Nrf2 in fibroblasts induces cellular senescence. Using a combination of transcriptomics, matrix proteomics, chromatin immunoprecipitation and bioinformatics we demonstrate that fibroblasts with activated Nrf2 deposit a senescence-promoting matrix, with plasminogen activator inhibitor-1 being a key inducer of the senescence program. In vivo, activation of Nrf2 in fibroblasts promoted re-epithelialization of skin wounds, but also skin tumorigenesis. The pro-tumorigenic activity is of general relevance, since Nrf2 activation in skin fibroblasts induced the expression of genes characteristic for cancer-associated fibroblasts from different mouse and human tumors. Therefore, activated Nrf2 qualifies as a marker of the cancer-associated fibroblast phenotype. These data highlight the bright and the dark sides of Nrf2 and the need for time-controlled activation of this transcription factor.


Assuntos
Reprogramação Celular/fisiologia , Fibroblastos/fisiologia , Fator 2 Relacionado a NF-E2/fisiologia , Animais , Antioxidantes/metabolismo , Carcinogênese/metabolismo , Proliferação de Células , Senescência Celular/fisiologia , Matriz Extracelular/fisiologia , Regulação da Expressão Gênica/fisiologia , Camundongos , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/fisiologia , Pele/metabolismo , Cicatrização/fisiologia
8.
Plant J ; 89(3): 502-509, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27747953

RESUMO

Pathogenesis-related proteins played a pioneering role 50 years ago in the discovery of plant innate immunity as a set of proteins that accumulated upon pathogen challenge. The most abundant of these proteins, PATHOGENESIS-RELATED 1 (PR-1) encodes a small antimicrobial protein that has become, as a marker of plant immune signaling, one of the most referred to plant proteins. The biochemical activity and mode of action of PR-1 proteins has remained elusive, however. Here, we provide genetic and biochemical evidence for the capacity of PR-1 proteins to bind sterols, and demonstrate that the inhibitory effect on pathogen growth is caused by the sequestration of sterol from pathogens. In support of our findings, sterol-auxotroph pathogens such as the oomycete Phytophthora are particularly sensitive to PR-1, whereas sterol-prototroph fungal pathogens become highly sensitive only when sterol biosynthesis is compromised. Our results are in line with previous findings showing that plants with enhanced PR-1 expression are particularly well protected against oomycete pathogens.


Assuntos
Proteínas de Plantas/metabolismo , Plantas/metabolismo , Esteróis/metabolismo , Anti-Infecciosos/metabolismo , Colesterol/metabolismo , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Patógeno , Immunoblotting , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Solanum lycopersicum/microbiologia , Phytophthora/fisiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Plantas/genética , Plantas/microbiologia , Ligação Proteica , Nicotiana/genética , Nicotiana/metabolismo , Nicotiana/microbiologia
9.
J Exp Bot ; 59(4): 907-15, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18326559

RESUMO

Formation of 13-lipoxygenase-derived divinyl ethers has been described in garlic bulbs. Here, the identification of a cDNA from garlic is described, which encodes for an enzyme that corresponds to divinyl ether synthases (DES). The recombinant protein was expressed in Escherichia coli and shown to metabolize 13-hydroperoxy as well as 9-hydroperoxy linole(n)ic acid to etherole(n)ic and colnele(n)ic acid, respectively. This biochemical feature classifies it as a member of the CYP74C subfamily of cytochrome P-450 enzymes. Product analysis after incubation of purified recombinant enzyme and fatty acid hydroperoxides revealed the formation of a mixture of different cis/trans isomers with one isomer often dominant. RNA blot analyses showed a constitutive expression of DES transcripts predominant in below-ground organs of garlic. By exogenous application of salicylic acid and sorbitol, but not by methyljasmonate, the transcript was also induced in leaves. Whereas the prominent divinyl ether in garlic was the 13-lipoxygenase-derived etheroleic acid, analysis of transgenic Arabidopsis expressing garlic DES showed that 9-lipoxygenase-derived colnelenic acid dominated 24 h after wounding. These data indicate that the product pattern of this DES from garlic depends on the substrate availability and that the enzyme is the first member in the group of 9/13-DES.


Assuntos
Alho/metabolismo , Raízes de Plantas/metabolismo , Compostos de Vinila/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Regulação da Expressão Gênica de Plantas , Dados de Sequência Molecular , Oxilipinas/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas
10.
Phytochemistry ; 68(6): 797-801, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17258245

RESUMO

Oxygenated polyunsaturated fatty acids synthesized via the lipoxygenase pathway play a role in plant responses to pathogen attack. In solanaceous plants, the preferential stimulation of the 9-lipoxygenase pathway in response to pathogen infection leads to the formation of the divinyl ether-containing polyunsaturated fatty acids colneleic and colnelenic acid, as well as hydroxy and trihydroxy polyunsaturated fatty acids. To functionally assess the role of divinyl ethers, transgenic potato plants were generated which express an RNA interference construct directed against the pathogen-inducible 9-divinyl ether synthase. Efficient reduction of 9-divinyl ether synthase transcript accumulation correlated with reduced levels of colneleic and colnelenic acid. However, in response to infection with virulent Phytophthora infestans, the causal agent of late blight disease, no significant differences in pathogen biomass could be detected suggesting that the levels of antimicrobial divinyl ethers are not critical for defense against Phytophthora infestans in a compatible interaction.


Assuntos
Ácidos Graxos Insaturados/metabolismo , Solanum tuberosum/metabolismo , Compostos de Vinila/metabolismo , Éteres/química , Éteres/metabolismo , Ácidos Graxos Monoinsaturados/química , Ácidos Graxos Monoinsaturados/metabolismo , Ácidos Graxos Insaturados/química , Modelos Químicos , Estrutura Molecular , Oxirredução , Phytophthora/crescimento & desenvolvimento , Doenças das Plantas/microbiologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Plantas Geneticamente Modificadas , Solanum tuberosum/genética , Solanum tuberosum/microbiologia , Compostos de Vinila/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA