Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Mol Biosci ; 11: 1328077, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38410188

RESUMO

Background: The mitotic kinesin, KIF18A, is required for proliferation of cancer cells that exhibit chromosome instability (CIN), implicating it as a promising target for treatment of a subset of aggressive tumor types. Determining regions of the KIF18A protein to target for inhibition will be important for the design and optimization of effective small molecule inhibitors. Methods: In this study, we used cultured cell models to investigate the effects of mutating S284 within the alpha-4 helix of KIF18A, which was previously identified as a phosphorylated residue. Results: Mutations in S284 cause relocalization of KIF18A from the plus-ends of spindle microtubules to the spindle poles. Furthermore, KIF18A S284 mutants display loss of KIF18A function and fail to support proliferation in CIN tumor cells. Interestingly, similar effects on KIF18A localization and function were seen after treatment of CIN cells with KIF18A inhibitory compounds that are predicted to interact with residues within the alpha-4 helix. Conclusion: These data implicate the KIF18A alpha-4 helix as an effective target for inhibition and demonstrate that small molecules targeting KIF18A selectively limit CIN tumor cell proliferation and result in phenotypically similar effects on mitosis at the single cell level compared to genetic perturbations.

2.
bioRxiv ; 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37905069

RESUMO

The mitotic kinesin, KIF18A, is required for proliferation of cancer cells that exhibit chromosome instability (CIN), implicating it as a promising target for treatment of a subset of aggressive tumor types. Determining regions of the KIF18A protein to target for inhibition will be important for the design and optimization of effective small molecule inhibitors. In this study, we investigated the effects of mutating S284 within the alpha-4 helix of KIF18A, which was previously identified as a phosphorylated residue. Mutations in S284 cause relocalization of KIF18A from the plus-ends of spindle microtubules to the spindle poles. Furthermore, KIF18A S284 mutants display loss of KIF18A function and fail to support proliferation in CIN tumor cells. Interestingly, similar effects on KIF18A localization and function were seen after treatment of CIN cells with KIF18A inhibitory compounds that are predicted to interact with residues within the alpha-4 helix. These data implicate the KIF18A alpha-4 helix as an effective target for inhibition and demonstrate that small molecules targeting KIF18A selectively limit CIN tumor cell proliferation and result in phenotypically similar effects on mitosis at the single cell level compared to genetic perturbations.

3.
J Cell Biol ; 220(11)2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34515734

RESUMO

Micronuclei, whole or fragmented chromosomes spatially separated from the main nucleus, are associated with genomic instability and have been identified as drivers of tumorigenesis. Paradoxically, Kif18a mutant mice produce micronuclei due to asynchronous segregation of unaligned chromosomes in vivo but do not develop spontaneous tumors. We report here that micronuclei in Kif18a mutant mice form stable nuclear envelopes. Challenging Kif18a mutant mice via deletion of the Trp53 gene led to formation of thymic lymphoma with elevated levels of micronuclei. However, loss of Kif18a had modest or no effect on survival of Trp53 homozygotes and heterozygotes, respectively. Micronuclei in cultured KIF18A KO cells form stable nuclear envelopes characterized by increased recruitment of nuclear envelope components and successful expansion of decondensing chromatin compared with those induced by nocodazole washout or radiation. Lagging chromosomes were also positioned closer to the main chromatin masses in KIF18A KO cells. These data suggest that not all micronuclei actively promote tumorigenesis.


Assuntos
Carcinogênese/genética , Núcleo Celular/genética , Cinesinas/genética , Membrana Nuclear/genética , Animais , Linhagem Celular , Cromatina/genética , Cromossomos/genética , Dano ao DNA/genética , Feminino , Instabilidade Genômica/genética , Humanos , Masculino , Camundongos
4.
Nat Commun ; 12(1): 1213, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-33619254

RESUMO

Chromosomal instability (CIN) is a hallmark of tumor cells caused by changes in the dynamics and control of microtubules that compromise the mitotic spindle. Thus, CIN cells may respond differently than diploid cells to treatments that target mitotic spindle regulation. Here, we test this idea by inhibiting a subset of kinesin motor proteins involved in mitotic spindle control. KIF18A is required for proliferation of CIN cells derived from triple negative breast cancer or colorectal cancer tumors but is not required in near-diploid cells. Following KIF18A inhibition, CIN tumor cells exhibit mitotic delays, multipolar spindles, and increased cell death. Sensitivity to KIF18A knockdown is strongly correlated with centrosome fragmentation, which requires dynamic microtubules but does not depend on bipolar spindle formation or mitotic arrest. Our results indicate the altered spindle microtubule dynamics characteristic of CIN tumor cells can be exploited to reduce the proliferative capacity of CIN cells.


Assuntos
Instabilidade Cromossômica , Cinesinas/metabolismo , Neoplasias/genética , Neoplasias/patologia , Pontos de Checagem do Ciclo Celular , Morte Celular , Linhagem Celular Tumoral , Proliferação de Células , Centrossomo/metabolismo , Humanos , Microtúbulos/metabolismo , Mitose , Modelos Biológicos , Nocodazol/farmacologia , Paclitaxel/farmacologia , Fuso Acromático/metabolismo
5.
Nature ; 590(7846): 486-491, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33505028

RESUMO

Selective targeting of aneuploid cells is an attractive strategy for cancer treatment1. However, it is unclear whether aneuploidy generates any clinically relevant vulnerabilities in cancer cells. Here we mapped the aneuploidy landscapes of about 1,000 human cancer cell lines, and analysed genetic and chemical perturbation screens2-9 to identify cellular vulnerabilities associated with aneuploidy. We found that aneuploid cancer cells show increased sensitivity to genetic perturbation of core components of the spindle assembly checkpoint (SAC), which ensures the proper segregation of chromosomes during mitosis10. Unexpectedly, we also found that aneuploid cancer cells were less sensitive than diploid cells to short-term exposure to multiple SAC inhibitors. Indeed, aneuploid cancer cells became increasingly sensitive to inhibition of SAC over time. Aneuploid cells exhibited aberrant spindle geometry and dynamics, and kept dividing when the SAC was inhibited, resulting in the accumulation of mitotic defects, and in unstable and less-fit karyotypes. Therefore, although aneuploid cancer cells could overcome inhibition of SAC more readily than diploid cells, their long-term proliferation was jeopardized. We identified a specific mitotic kinesin, KIF18A, whose activity was perturbed in aneuploid cancer cells. Aneuploid cancer cells were particularly vulnerable to depletion of KIF18A, and KIF18A overexpression restored their response to SAC inhibition. Our results identify a therapeutically relevant, synthetic lethal interaction between aneuploidy and the SAC.


Assuntos
Aneuploidia , Pontos de Checagem da Fase M do Ciclo Celular/efeitos dos fármacos , Neoplasias/patologia , Cariótipo Anormal/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Segregação de Cromossomos/efeitos dos fármacos , Diploide , Genes Letais , Humanos , Cinesinas/deficiência , Cinesinas/genética , Cinesinas/metabolismo , Neoplasias/genética , Fuso Acromático/efeitos dos fármacos , Mutações Sintéticas Letais/efeitos dos fármacos , Mutações Sintéticas Letais/genética , Fatores de Tempo
6.
Elife ; 92020 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-31958056

RESUMO

Kinesin-5 motors organize mitotic spindles by sliding apart microtubules. They are homotetramers with dimeric motor and tail domains at both ends of a bipolar minifilament. Here, we describe a regulatory mechanism involving direct binding between tail and motor domains and its fundamental role in microtubule sliding. Kinesin-5 tails decrease microtubule-stimulated ATP-hydrolysis by specifically engaging motor domains in the nucleotide-free or ADP states. Cryo-EM reveals that tail binding stabilizes an open motor domain ATP-active site. Full-length motors undergo slow motility and cluster together along microtubules, while tail-deleted motors exhibit rapid motility without clustering. The tail is critical for motors to zipper together two microtubules by generating substantial sliding forces. The tail is essential for mitotic spindle localization, which becomes severely reduced in tail-deleted motors. Our studies suggest a revised microtubule-sliding model, in which kinesin-5 tails stabilize motor domains in the microtubule-bound state by slowing ATP-binding, resulting in high-force production at both homotetramer ends.


Assuntos
Cinesinas/metabolismo , Microtúbulos/metabolismo , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Microscopia Crioeletrônica , Humanos , Hidrólise , Cinesinas/química , Cinesinas/ultraestrutura , Cinética , Ligação Proteica , Domínios Proteicos , Fuso Acromático/metabolismo
7.
J Cell Biol ; 218(4): 1148-1163, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30733233

RESUMO

Chromosome alignment at the equator of the mitotic spindle is a highly conserved step during cell division; however, its importance to genomic stability and cellular fitness is not understood. Normal mammalian somatic cells lacking KIF18A function complete cell division without aligning chromosomes. These alignment-deficient cells display normal chromosome copy numbers in vitro and in vivo, suggesting that chromosome alignment is largely dispensable for maintenance of euploidy. However, we find that loss of chromosome alignment leads to interchromosomal compaction defects during anaphase, abnormal organization of chromosomes into a single nucleus at mitotic exit, and the formation of micronuclei in vitro and in vivo. These defects slow cell proliferation and are associated with impaired postnatal growth and survival in mice. Our studies support a model in which the alignment of mitotic chromosomes promotes proper organization of chromosomes into a single nucleus and continued proliferation by ensuring that chromosomes segregate as a compact mass during anaphase.


Assuntos
Anáfase , Segregação de Cromossomos , Cromossomos Humanos , Fuso Acromático/fisiologia , Animais , Linhagem Celular , Proliferação de Células , Células Epiteliais/fisiologia , Humanos , Cinesinas/genética , Cinesinas/metabolismo , Camundongos Knockout , Epitélio Pigmentado da Retina/fisiologia , Fuso Acromático/genética , Fuso Acromático/metabolismo , Fatores de Tempo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
8.
Mol Cancer Res ; 16(4): 587-598, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29378907

RESUMO

Aggressive breast cancer is difficult to treat as it is unresponsive to many hormone-based therapies; therefore, it is imperative to identify novel, targetable regulators of progression. Long non-coding RNAs (lncRNA) are important regulators in breast cancer and have great potential as therapeutic targets; however, little is known about how the majority of lncRNAs function within breast cancer. This study characterizes a novel lncRNA, MANCR (mitotically-associated long noncoding RNA; LINC00704), which is upregulated in breast cancer patient specimens and cells. Depletion of MANCR in triple-negative breast cancer cells significantly decreases cell proliferation and viability, with concomitant increases in DNA damage. Transcriptome analysis, based on RNA sequencing, following MANCR knockdown reveals significant differences in the expression of >2,000 transcripts, and gene set enrichment analysis identifies changes in multiple categories related to cell-cycle regulation. Furthermore, MANCR expression is highest in mitotic cells by both RT-qPCR and RNA in situ hybridization. Consistent with a role in cell-cycle regulation, MANCR-depleted cells have a lower mitotic index and higher incidences of defective cytokinesis and cell death. Taken together, these data reveal a role for the novel lncRNA, MANCR, in genomic stability of aggressive breast cancer, and identify it as a potential therapeutic target.Implications: The novel lncRNA, MANCR (LINC00704), is upregulated in breast cancer and is functionally linked with cell proliferation, viability, and genomic stability. Mol Cancer Res; 16(4); 587-98. ©2018 AACR.


Assuntos
Neoplasias da Mama/genética , Mitose , RNA Longo não Codificante/genética , Regulação para Cima , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Instabilidade Genômica , Humanos , Análise de Sequência de RNA
9.
J Cell Physiol ; 229(12): 1881-3, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24905602

RESUMO

Chromosome segregation and spindle microtubule dynamics are strictly coordinated during cell division in order to preserve genomic integrity. Alterations in the genome that affect microtubule stability and spindle assembly during mitosis may contribute to genomic instability and cancer predisposition, but directly testing this potential link poses a significant challenge. Germ-line mutations in tumor suppressor genes that predispose patients to cancer and alter spindle microtubule dynamics offer unique opportunities to investigate the relationship between spindle dysfunction and carcinogenesis. Mutations in two such tumor suppressors, adenomatous polyposis coli (APC) and Shwachman-Bodian-Diamond syndrome (SBDS), affect multifunctional proteins that have been well characterized for their roles in Wnt signaling and interphase ribosome assembly, respectively. Less understood, however, is how their shared involvement in stabilizing the microtubules that comprise the mitotic spindle contributes to cancer predisposition. Here, we briefly discuss the potential for mutations in APC and SBDS as informative tools for studying the impact of mitotic spindle dysfunction on cellular transformation.


Assuntos
Doenças da Medula Óssea/genética , Insuficiência Pancreática Exócrina/genética , Lipomatose/genética , Microtúbulos/genética , Neoplasias/genética , Fuso Acromático/genética , Proteína da Polipose Adenomatosa do Colo/genética , Doenças da Medula Óssea/patologia , Carcinogênese/genética , Segregação de Cromossomos/genética , Insuficiência Pancreática Exócrina/patologia , Instabilidade Genômica , Mutação em Linhagem Germinativa , Humanos , Lipomatose/patologia , Mitose/genética , Neoplasias/patologia , Síndrome de Shwachman-Diamond
10.
Redox Biol ; 2: 475-84, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24624337

RESUMO

Thioredoxin reductase (TR) catalyzes the reduction of thioredoxin (TRX), which in turn reduces mammalian typical 2-Cys peroxiredoxins (PRXs 1-4), thiol peroxidases implicated in redox homeostasis and cell signaling. Typical 2-Cys PRXs are inactivated by hyperoxidation of the peroxidatic cysteine to cysteine-sulfinic acid, and regenerated in a two-step process involving retro-reduction by sulfiredoxin (SRX) and reduction by TRX. Here transient exposure to menadione and glucose oxidase was used to examine the dynamics of oxidative inactivation and reactivation of PRXs in mouse C10 cells expressing various isoforms of TR, including wild type cytoplasmic TR1 (Sec-TR1) and mitochondrial TR2 (Sec-TR2) that encode selenocysteine, as well as mutants of TR1 and TR2 in which the selenocysteine codon was changed to encode cysteine (Cys-TR1 or Cys-TR2). In C10 cells endogenous TR activity was insensitive to levels of hydrogen peroxide that hyperoxidize PRXs. Expression of Sec-TR1 increased TR activity, reduced the basal cytoplasmic redox state, and increased the rate of reduction of a redox-responsive cytoplasmic GFP probe (roGFP), but did not influence either the rate of inactivation or the rate of retro-reduction of PRXs. In comparison to roGFP, which was reduced within minutes once oxidants were removed reduction of 2-Cys PRXs occurred over many hours. Expression of wild type Sec-TR1 or Sec-TR2, but not Cys-TR1 or TR2, increased the rate of reduction of PRXs and improved cell survival after menadione exposure. These results indicate that expression levels of TR do not reduce the severity of initial oxidative insults, but rather govern the rate of reduction of cellular factors required for cell viability. Because Sec-TR is completely insensitive to cytotoxic levels of hydrogen peroxide, we suggest TR functions at the top of a redox pyramid that governs the oxidation state of peroxiredoxins and other protein factors, thereby dictating a hierarchy of phenotypic responses to oxidative insults.


Assuntos
Cisteína/análogos & derivados , Cisteína/metabolismo , Pulmão/enzimologia , Peroxirredoxinas/metabolismo , Tiorredoxina Redutase 1/metabolismo , Tiorredoxina Redutase 2/metabolismo , Animais , Sobrevivência Celular , Células Epiteliais/enzimologia , Glucose Oxidase/metabolismo , Humanos , Peróxido de Hidrogênio/farmacologia , Pulmão/citologia , Camundongos , Estresse Oxidativo , Selenocisteína/metabolismo , Tiorredoxina Redutase 1/genética , Tiorredoxina Redutase 2/genética , Vitamina K 3/farmacologia
11.
J Cell Physiol ; 228(4): 835-45, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23018647

RESUMO

Malignant mesothelioma (MM) is an intractable tumor of the peritoneal and pleural cavities primarily linked to exposure to asbestos. Recently, we described an interplay between mitochondrial-derived oxidants and expression of FOXM1, a redox-responsive transcription factor that has emerged as a promising therapeutic target in solid malignancies. Here we have investigated the effects of nitroxides targeted to mitochondria via triphenylphosphonium (TPP) moieties on mitochondrial oxidant production, expression of FOXM1 and peroxiredoxin 3 (PRX3), and cell viability in MM cells in culture. Both Mito-carboxy-proxyl (MCP) and Mito-TEMPOL (MT) caused dose-dependent increases in mitochondrial oxidant production that was accompanied by inhibition of expression of FOXM1 and PRX3 and loss of cell viability. At equivalent concentrations TPP, CP, and TEMPOL had no effect on these endpoints. Live cell ratiometric imaging with a redox-responsive green fluorescent protein targeted to mitochondria (mito-roGFP) showed that MCP and MT, but not CP, TEMPOL, or TPP, rapidly induced mitochondrial fragmentation and swelling, morphological transitions that were associated with diminished ATP levels and increased production of mitochondrial oxidants. Mdivi-1, an inhibitor of mitochondrial fission, did not rescue mitochondria from fragmentation by MCP. Immunofluorescence microscopy experiments indicate a fraction of FOXM1 coexists in the cytoplasm with mitochondrial PRX3. Our results indicate that MCP and MT inhibit FOXM1 expression and MM tumor cell viability via perturbations in redox homeostasis caused by marked disruption of mitochondrial architecture, and suggest that both compounds, either alone or in combination with thiostrepton or other agents, may provide credible therapeutic options for the management of MM.


Assuntos
Fatores de Transcrição Forkhead/antagonistas & inibidores , Fatores de Transcrição Forkhead/biossíntese , Mesotelioma/metabolismo , Mitocôndrias/metabolismo , Oxidantes/metabolismo , Peroxirredoxina III/antagonistas & inibidores , Peroxirredoxina III/biossíntese , Trifosfato de Adenosina/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Citoplasma/efeitos dos fármacos , Citoplasma/genética , Citoplasma/metabolismo , Citoplasma/fisiologia , Proteína Forkhead Box M1 , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Homeostase/efeitos dos fármacos , Homeostase/genética , Homeostase/fisiologia , Humanos , Mesotelioma/patologia , Mitocôndrias/efeitos dos fármacos , Dinâmica Mitocondrial/efeitos dos fármacos , Dinâmica Mitocondrial/genética , Dinâmica Mitocondrial/fisiologia , Compostos Organofosforados/farmacologia , Oxirredução/efeitos dos fármacos , Peroxirredoxina III/genética , Peroxirredoxina III/metabolismo , Quinazolinonas/farmacologia
12.
Sci STKE ; 2004(224): pe11, 2004 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-15026579

RESUMO

The canonical view of the mammalian cell cycle arose from studies of cultured cells rather than mutant organisms. It depicts the many complexes of cyclin and Cdk (cyclin/Cdk) as fulfilling unique and essential steps that dictate the sequential order of cell cycle events. Recent analyses of knockout mice challenge this view. Cdk2 and cyclin E, long thought to be essential, are largely dispensable. Here, we discuss the phenotypes of these and other cyclin/Cdk mutants in genetically tractable metazoa (mouse, fly, and nematode) and explore possible reasons behind similarities and differences among experimental systems and cell types.


Assuntos
Quinases relacionadas a CDC2 e CDC28/fisiologia , Ciclo Celular/fisiologia , Ciclina E/fisiologia , Animais , Quinases relacionadas a CDC2 e CDC28/deficiência , Quinases relacionadas a CDC2 e CDC28/genética , Células Cultivadas , Ciclina E/deficiência , Ciclina E/genética , Quinase 2 Dependente de Ciclina , Quinases Ciclina-Dependentes/antagonistas & inibidores , Replicação do DNA , Desenvolvimento Embrionário e Fetal/fisiologia , Marcação de Genes , Humanos , Invertebrados/genética , Invertebrados/metabolismo , Substâncias Macromoleculares , Mamíferos/genética , Mamíferos/metabolismo , Camundongos , Camundongos Knockout , Modelos Biológicos , Fenótipo , Fosforilação , Processamento de Proteína Pós-Traducional , Proteína do Retinoblastoma/fisiologia , Fase S/fisiologia , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA