Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Magn Reson Med ; 79(5): 2564-2575, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-28913930

RESUMO

PURPOSE: To determine the in vitro accuracy, test-retest repeatability, and interplatform reproducibility of T1 quantification protocols used for dynamic contrast-enhanced MRI at 1.5 and 3 T. METHODS: A T1 phantom with 14 samples was imaged at eight centers with a common inversion-recovery spin-echo (IR-SE) protocol and a variable flip angle (VFA) protocol using seven flip angles, as well as site-specific protocols (VFA with different flip angles, variable repetition time, proton density, and Look-Locker inversion recovery). Factors influencing the accuracy (deviation from reference NMR T1 measurements) and repeatability were assessed using general linear mixed models. Interplatform reproducibility was assessed using coefficients of variation. RESULTS: For the common IR-SE protocol, accuracy (median error across platforms = 1.4-5.5%) was influenced predominantly by T1 sample (P < 10-6 ), whereas test-retest repeatability (median error = 0.2-8.3%) was influenced by the scanner (P < 10-6 ). For the common VFA protocol, accuracy (median error = 5.7-32.2%) was influenced by field strength (P = 0.006), whereas repeatability (median error = 0.7-25.8%) was influenced by the scanner (P < 0.0001). Interplatform reproducibility with the common VFA was lower at 3 T than 1.5 T (P = 0.004), and lower than that of the common IR-SE protocol (coefficient of variation 1.5T: VFA/IR-SE = 11.13%/8.21%, P = 0.028; 3 T: VFA/IR-SE = 22.87%/5.46%, P = 0.001). Among the site-specific protocols, Look-Locker inversion recovery and VFA (2-3 flip angles) protocols showed the best accuracy and repeatability (errors < 15%). CONCLUSIONS: The VFA protocols with 2 to 3 flip angles optimized for different applications achieved acceptable balance of extensive spatial coverage, accuracy, and repeatability in T1 quantification (errors < 15%). Further optimization in terms of flip-angle choice for each tissue application, and the use of B1 correction, are needed to improve the robustness of VFA protocols for T1 mapping. Magn Reson Med 79:2564-2575, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Assuntos
Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética , Imagens de Fantasmas , Processamento de Sinais Assistido por Computador , Encéfalo/diagnóstico por imagem , Mama/diagnóstico por imagem , Meios de Contraste/química , Feminino , Humanos , Imageamento por Ressonância Magnética/instrumentação , Imageamento por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/normas , Masculino , Neoplasias/diagnóstico por imagem , Próstata/diagnóstico por imagem , Reprodutibilidade dos Testes
2.
J Magn Reson Imaging ; 44(3): 610-9, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26949897

RESUMO

PURPOSE: We present a breast phantom designed to enable quantitative assessment of measurements of T1 relaxation time, apparent diffusion coefficient (ADC), and other attributes of breast tissue, with long-term support from a national metrology institute. MATERIALS AND METHODS: A breast phantom was created with two independent, interchangeable units for diffusion and T1 /T2 relaxation, each with flexible outer shells. The T1 unit was filled with corn syrup solution and grapeseed oil to mimic the relaxation behavior of fibroglandular and fatty tissues, respectively. The diffusion unit contains plastic tubes filled with aqueous solutions of polyvinylpyrrolidone (PVP) to modulate the ADC. The phantom was imaged at 1.5T and 3.0T using magnetic resonance imaging (MRI) scanners and common breast coils from multiple manufacturers to assess T1 and T2 relaxation time and ADC values. RESULTS: The fibroglandular mimic exhibited target T1 values on 1.5T and 3.0T clinical systems (25-75 percentile range: 1289 to 1400 msec and 1533 to 1845 msec, respectively) across all bore temperatures. PVP solutions mimicked the range of ADC values from malignant tumors to normal breast tissue (40% PVP median: 633 × 10(-6) mm(2) /s to 0% PVP median: 2231 × 10(-6) mm(2) /s) at temperatures of 17-24°C. The interchangeable phantom units allowed both the diffusion and T1 /T2 units to be tested on the left and right sides of the coil to assess any variation. CONCLUSION: This phantom enables T1 and ADC measurements, fits in a variety of clinical breast coils, and can serve as a quality control tool to facilitate the standardization of quantitative measurements for breast MRI. J. Magn. Reson. Imaging 2016;44:610-619.


Assuntos
Materiais Biomiméticos/química , Mama/diagnóstico por imagem , Mama/fisiologia , Interpretação de Imagem Assistida por Computador/instrumentação , Imageamento por Ressonância Magnética/instrumentação , Imagens de Fantasmas , Mama/anatomia & histologia , Desenho de Equipamento , Análise de Falha de Equipamento , Feminino , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
3.
Magn Reson Imaging ; 26(2): 270-8, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17826938

RESUMO

Despite the importance of the tobacco smoke particulate matter in the lungs to the etiology of pulmonary disease in cigarette smokers, little is currently known about the spatial distribution of particle deposition or the persistence of the resulting deposits in humans, and no satisfactory technique currently exists to directly observe tobacco smoke condensate in airways. In this proof-of-principle work, hyperpolarized (hp) 83Kr MRI and NMR spectroscopy are introduced as probes for tobacco smoke deposition in porous media. A reduction in the hp-83Kr longitudinal (T1) relaxation of up to 95% under near-ambient humidity, pressure and temperature conditions was observed when the krypton gas was brought into contact with surfaces that had been exposed to cigarette smoke. This smoke-induced acceleration of the 83Kr self-relaxation was observed for model glass surfaces that, in some experiments, were coated with bovine lung surfactant extract. However, a similar effect was not observed with hp-(129)Xe indicating that the 83Kr sensitivity to smoke deposition was not caused by paramagnetic species but rather by quadrupolar relaxation due to high adsorption affinity for the smoke deposits. The 83Kr T1 differences between smoke-treated and untreated surfaces were sufficient to produce a strong contrast in variable flip angle FLASH hp-83Kr MRI, suggesting that hp-83Kr may be a promising contrast agent for in vivo pulmonary MRI.


Assuntos
Criptônio , Imageamento por Ressonância Magnética/métodos , Nicotiana , Fumaça , Animais , Bovinos , Hélio/química , Humanos , Isótopos/química , Criptônio/química , Pulmão/fisiologia , Imagens de Fantasmas , Surfactantes Pulmonares/química , Isótopos de Xenônio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA