Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Elife ; 102021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34519268

RESUMO

The vertebrate-specific DEP domain-containing mTOR interacting protein (DEPTOR), an oncoprotein or tumor suppressor, has important roles in metabolism, immunity, and cancer. It is the only protein that binds and regulates both complexes of mammalian target of rapamycin (mTOR), a central regulator of cell growth. Biochemical analysis and cryo-EM reconstructions of DEPTOR bound to human mTOR complex 1 (mTORC1) and mTORC2 reveal that both structured regions of DEPTOR, the PDZ domain and the DEP domain tandem (DEPt), are involved in mTOR interaction. The PDZ domain binds tightly with mildly activating effect, but then acts as an anchor for DEPt association that allosterically suppresses mTOR activation. The binding interfaces of the PDZ domain and DEPt also support further regulation by other signaling pathways. A separate, substrate-like mode of interaction for DEPTOR phosphorylation by mTOR complexes rationalizes inhibition of non-stimulated mTOR activity at higher DEPTOR concentrations. The multifaceted interplay between DEPTOR and mTOR provides a basis for understanding the divergent roles of DEPTOR in physiology and opens new routes for targeting the mTOR-DEPTOR interaction in disease.


Assuntos
Regulação da Expressão Gênica/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Linhagem Celular , Microscopia Crioeletrônica , Cristalografia por Raios X , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Mariposas , Domínios Proteicos , Serina-Treonina Quinases TOR/genética
2.
Sci Adv ; 6(45)2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33158864

RESUMO

The protein kinase mammalian target of rapamycin (mTOR) is the central regulator of cell growth. Aberrant mTOR signaling is linked to cancer, diabetes, and neurological disorders. mTOR exerts its functions in two distinct multiprotein complexes, mTORC1 and mTORC2. Here, we report a 3.2-Å resolution cryo-EM reconstruction of mTORC2. It reveals entangled folds of the defining Rictor and the substrate-binding SIN1 subunits, identifies the carboxyl-terminal domain of Rictor as the source of the rapamycin insensitivity of mTORC2, and resolves mechanisms for mTORC2 regulation by complex destabilization. Two previously uncharacterized small-molecule binding sites are visualized, an inositol hexakisphosphate (InsP6) pocket in mTOR and an mTORC2-specific nucleotide binding site in Rictor, which also forms a zinc finger. Structural and biochemical analyses suggest that InsP6 and nucleotide binding do not control mTORC2 activity directly but rather have roles in folding or ternary interactions. These insights provide a firm basis for studying mTORC2 signaling and for developing mTORC2-specific inhibitors.


Assuntos
Proteínas de Transporte , Serina-Treonina Quinases TOR , Proteínas de Transporte/metabolismo , Humanos , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Nucleotídeos/metabolismo , Proteína Companheira de mTOR Insensível à Rapamicina/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Fatores de Transcrição/metabolismo
3.
Nature ; 558(7710): 470-474, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29899443

RESUMO

Acetyl-CoA carboxylase catalyses the ATP-dependent carboxylation of acetyl-CoA, a rate-limiting step in fatty acid biosynthesis1,2. Eukaryotic acetyl-CoA carboxylases are large, homodimeric multienzymes. Human acetyl-CoA carboxylase occurs in two isoforms: the metabolic, cytosolic ACC1, and ACC2, which is anchored to the outer mitochondrial membrane and controls fatty acid ß-oxidation1,3. ACC1 is regulated by a complex interplay of phosphorylation, binding of allosteric regulators and protein-protein interactions, which is further linked to filament formation1,4-8. These filaments were discovered in vitro and in vivo 50 years ago7,9,10, but the structural basis of ACC1 polymerization and regulation remains unknown. Here, we identify distinct activated and inhibited ACC1 filament forms. We obtained cryo-electron microscopy structures of an activated filament that is allosterically induced by citrate (ACC-citrate), and an inactivated filament form that results from binding of the BRCT domains of the breast cancer type 1 susceptibility protein (BRCA1). While non-polymeric ACC1 is highly dynamic, filament formation locks ACC1 into different catalytically competent or incompetent conformational states. This unique mechanism of enzyme regulation via large-scale conformational changes observed in ACC1 has potential uses in engineering of switchable biosynthetic systems. Dissecting the regulation of acetyl-CoA carboxylase opens new paths towards counteracting upregulation of fatty acid biosynthesis in disease.


Assuntos
Acetil-CoA Carboxilase/química , Acetil-CoA Carboxilase/ultraestrutura , Microscopia Crioeletrônica , Acetil-CoA Carboxilase/metabolismo , Animais , Proteína BRCA1/química , Proteína BRCA1/farmacologia , Biopolímeros/química , Biopolímeros/metabolismo , Linhagem Celular , Ácido Cítrico/farmacologia , Humanos , Modelos Moleculares , Polimerização/efeitos dos fármacos , Domínios Proteicos/efeitos dos fármacos , Estrutura Quaternária de Proteína/efeitos dos fármacos , Spodoptera , Relação Estrutura-Atividade
4.
Elife ; 72018 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-29424687

RESUMO

The mammalian target of rapamycin (mTOR) is a key protein kinase controlling cellular metabolism and growth. It is part of the two structurally and functionally distinct multiprotein complexes mTORC1 and mTORC2. Dysregulation of mTOR occurs in diabetes, cancer and neurological disease. We report the architecture of human mTORC2 at intermediate resolution, revealing a conserved binding site for accessory proteins on mTOR and explaining the structural basis for the rapamycin insensitivity of the complex.


Assuntos
Microscopia Crioeletrônica , Alvo Mecanístico do Complexo 2 de Rapamicina/química , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Humanos , Modelos Moleculares , Ligação Proteica , Conformação Proteica
5.
Structure ; 25(2): 341-352, 2017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-28111021

RESUMO

Vascular endothelial growth factors (VEGFs) regulate blood and lymph vessel development upon activation of three receptor tyrosine kinases: VEGFR-1, -2, and -3. Partial structures of VEGFR/VEGF complexes based on single-particle electron microscopy, small-angle X-ray scattering, and X-ray crystallography revealed the location of VEGF binding and domain arrangement of individual receptor subdomains. Here, we describe the structure of the full-length VEGFR-1 extracellular domain in complex with VEGF-A at 4 Å resolution. We combined X-ray crystallography, single-particle electron microscopy, and molecular modeling for structure determination and validation. The structure reveals the molecular details of ligand-induced receptor dimerization, in particular of homotypic receptor interactions in immunoglobulin homology domains 4, 5, and 7. Functional analyses of ligand binding and receptor activation confirm the relevance of these homotypic contacts and identify them as potential therapeutic sites to allosterically inhibit VEGFR-1 activity.


Assuntos
Fator A de Crescimento do Endotélio Vascular/química , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/química , Sequência de Aminoácidos , Sítios de Ligação , Clonagem Molecular , Cristalografia por Raios X , Expressão Gênica , Humanos , Ligantes , Microscopia Eletrônica , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Termodinâmica , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo
6.
Structure ; 24(8): 1227-1236, 2016 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-27396827

RESUMO

Biotin-dependent acyl-coenzyme A (CoA) carboxylases (aCCs) are involved in key steps of anabolic pathways and comprise three distinct functional units: biotin carboxylase (BC), biotin carboxyl carrier protein (BCCP), and carboxyl transferase (CT). YCC multienzymes are a poorly characterized family of prokaryotic aCCs of unidentified substrate specificity, which integrate all functional units into a single polypeptide chain. We employed a hybrid approach to study the dynamic structure of Deinococcus radiodurans (Dra) YCC: crystal structures of isolated domains reveal a hexameric CT core with extended substrate binding pocket and a dimeric BC domain. Negative-stain electron microscopy provides an approximation of the variable positioning of the BC dimers relative to the CT core. Small-angle X-ray scattering yields quantitative information on the ensemble of Dra YCC structures in solution. Comparison with other carrier protein-dependent multienzymes highlights a characteristic range of large-scale interdomain flexibility in this important class of biosynthetic enzymes.


Assuntos
Acetil-CoA Carboxilase/química , Proteínas de Bactérias/química , Biotina/química , Carbono-Nitrogênio Ligases/química , Carboxil e Carbamoil Transferases/química , Deinococcus/química , Acetil-CoA Carboxilase/genética , Acetil-CoA Carboxilase/metabolismo , Motivos de Aminoácidos , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Baculoviridae/genética , Baculoviridae/metabolismo , Sítios de Ligação , Biotina/metabolismo , Carbono-Nitrogênio Ligases/genética , Carbono-Nitrogênio Ligases/metabolismo , Carboxil e Carbamoil Transferases/genética , Carboxil e Carbamoil Transferases/metabolismo , Clonagem Molecular , Cristalografia por Raios X , Deinococcus/enzimologia , Escherichia coli/química , Escherichia coli/enzimologia , Ácido Graxo Sintase Tipo II/química , Ácido Graxo Sintase Tipo II/genética , Ácido Graxo Sintase Tipo II/metabolismo , Expressão Gênica , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Espalhamento a Baixo Ângulo , Células Sf9 , Spodoptera , Especificidade por Substrato , Difração de Raios X
7.
Nat Commun ; 7: 11196, 2016 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-27073141

RESUMO

Acetyl-CoA carboxylases (ACCs) catalyse the committed step in fatty-acid biosynthesis: the ATP-dependent carboxylation of acetyl-CoA to malonyl-CoA. They are important regulatory hubs for metabolic control and relevant drug targets for the treatment of the metabolic syndrome and cancer. Eukaryotic ACCs are single-chain multienzymes characterized by a large, non-catalytic central domain (CD), whose role in ACC regulation remains poorly characterized. Here we report the crystal structure of the yeast ACC CD, revealing a unique four-domain organization. A regulatory loop, which is phosphorylated at the key functional phosphorylation site of fungal ACC, wedges into a crevice between two domains of CD. Combining the yeast CD structure with intermediate and low-resolution data of larger fragments up to intact ACCs provides a comprehensive characterization of the dynamic fungal ACC architecture. In contrast to related carboxylases, large-scale conformational changes are required for substrate turnover, and are mediated by the CD under phosphorylation control.


Assuntos
Acetil-CoA Carboxilase/química , Acetil-CoA Carboxilase/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Sequência Conservada , Cristalografia por Raios X , Humanos , Modelos Moleculares , Complexos Multienzimáticos/química , Complexos Multienzimáticos/metabolismo , Fosforilação , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
8.
Proc Natl Acad Sci U S A ; 110(32): 12960-5, 2013 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-23878260

RESUMO

Vascular endothelial growth factors (VEGFs) and their receptors (VEGFRs) are key drivers of blood and lymph vessel formation in development, but also in several pathological processes. VEGF-C signaling through VEGFR-3 promotes lymphangiogenesis, which is a clinically relevant target for treating lymphatic insufficiency and for blocking tumor angiogenesis and metastasis. The extracellular domain of VEGFRs consists of seven Ig homology domains; domains 1-3 (D1-3) are responsible for ligand binding, and the membrane-proximal domains 4-7 (D4-7) are involved in structural rearrangements essential for receptor dimerization and activation. Here we analyzed the crystal structures of VEGF-C in complex with VEGFR-3 domains D1-2 and of the VEGFR-3 D4-5 homodimer. The structures revealed a conserved ligand-binding interface in D2 and a unique mechanism for VEGFR dimerization and activation, with homotypic interactions in D5. Mutation of the conserved residues mediating the D5 interaction (Thr446 and Lys516) and the D7 interaction (Arg737) compromised VEGF-C induced VEGFR-3 activation. A thermodynamic analysis of VEGFR-3 deletion mutants showed that D3, D4-5, and D6-7 all contribute to ligand binding. A structural model of the VEGF-C/VEGFR-3 D1-7 complex derived from small-angle X-ray scattering data is consistent with the homotypic interactions in D5 and D7. Taken together, our data show that ligand-dependent homotypic interactions in D5 and D7 are essential for VEGFR activation, opening promising possibilities for the design of VEGFR-specific drugs.


Assuntos
Multimerização Proteica , Estrutura Terciária de Proteína , Fator C de Crescimento do Endotélio Vascular/química , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/química , Sequência de Aminoácidos , Sítios de Ligação/genética , Ligação Competitiva , Cristalografia por Raios X , Eletroforese em Gel de Poliacrilamida , Humanos , Ligantes , Microscopia Eletrônica , Modelos Moleculares , Dados de Sequência Molecular , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Complexos Multiproteicos/ultraestrutura , Mutação , Ligação Proteica , Espalhamento a Baixo Ângulo , Homologia de Sequência de Aminoácidos , Termodinâmica , Fator C de Crescimento do Endotélio Vascular/genética , Fator C de Crescimento do Endotélio Vascular/metabolismo , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Difração de Raios X
9.
IUBMB Life ; 61(9): 915-22, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19658168

RESUMO

Vascular endothelial growth factors (VEGFs) regulate blood and lymphatic vessel development and homeostasis. VEGFs are predominantly produced by endothelial, hematopoietic, and stromal cells in response to hypoxia and upon stimulation by growth factors such as transforming growth factor beta (TGFbeta), interleukins, or platelet-derived growth factors (PDGFs). VEGFs specifically interact with one or several receptor tyrosine kinases (RTKs), VEGF receptor-1, -2, and -3 (VEGFR-1, -2, -3), and with distinct coreceptors such as neuropilins or heparan sulfate glycosaminoglycans. VEGF receptors are classified as type V RTKs whose extracellular domains consists of seven immunoglobulin-like (Ig-like) domains. VEGF receptors are activated upon ligand-mediated dimerization. However, little was known about the mechanism of receptor activation at the structural level until recently. New data published by several labs for VEGF and the related type III RTKs now suggest that both ligand-receptor as well as homotypic receptor-receptor interactions stabilize ligand-induced receptor dimers. These data support the idea that structural changes induced in the extracellular domain upon ligand binding instigate transmembrane signaling by properly positioning the intracellular kinase domains in active receptor dimers.


Assuntos
Receptores de Fatores de Crescimento do Endotélio Vascular/química , Receptores de Fatores de Crescimento do Endotélio Vascular/fisiologia , Animais , Humanos , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA