Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(31)2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34326255

RESUMO

The motor protein dynein undergoes coordinated conformational changes of its domains during motility along microtubules. Previous single-molecule studies analyzed the motion of the AAA rings of the dynein homodimer, but not the distal microtubule-binding domains (MTBDs) that step along the track. Here, we simultaneously tracked with nanometer precision two MTBDs and one AAA ring of a single dynein as it underwent hundreds of steps using three-color imaging. We show that the AAA ring and the MTBDs do not always step simultaneously and can take differently sized steps. This variability in the movement between the AAA ring and MTBDs results in an unexpectedly large number of conformational states of dynein during motility. Extracting data on conformational transition biases, we could accurately model dynein stepping in silico. Our results reveal that the flexibility between major dynein domains is critical for dynein motility.


Assuntos
Dineínas/química , Imagem Individual de Molécula/métodos , Microtúbulos , Conformação Proteica , Domínios Proteicos
2.
Proc Natl Acad Sci U S A ; 116(10): 4275-4284, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30770448

RESUMO

Light microscopy is a powerful tool for probing the conformations of molecular machines at the single-molecule level. Single-molecule Förster resonance energy transfer can measure intramolecular distance changes of single molecules in the range of 2 to 8 nm. However, current superresolution measurements become error-prone below 25 nm. Thus, new single-molecule methods are needed for measuring distances in the 8- to 25-nm range. Here, we describe methods that utilize information about localization and imaging errors to measure distances between two different color fluorophores with ∼1-nm accuracy at distances >2 nm. These techniques can be implemented in high throughput using a standard total internal reflection fluorescence microscope and open-source software. We applied our two-color localization method to uncover an unexpected ∼4-nm nucleotide-dependent conformational change in the coiled-coil "stalk" of the motor protein dynein. We anticipate that these methods will be useful for high-accuracy distance measurements of single molecules over a wide range of length scales.


Assuntos
Transferência Ressonante de Energia de Fluorescência/métodos , Corantes Fluorescentes/química , Ionóforos/química , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Nanotecnologia/métodos , Cor , Dineínas/ultraestrutura , Microscopia de Fluorescência por Excitação Multifotônica/instrumentação , Modelos Teóricos , Nanotecnologia/instrumentação , Sensibilidade e Especificidade , Fluxo de Trabalho
3.
Elife ; 72018 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-29897330

RESUMO

Cell division is essential to expand, shape, and replenish epithelia. In the adult small intestine, cells from a common progenitor intermix with other lineages, whereas cell progeny in many other epithelia form contiguous patches. The mechanisms that generate these distinct patterns of progeny are poorly understood. Using light sheet and confocal imaging of intestinal organoids, we show that lineages intersperse during cytokinesis, when elongated interphase cells insert between apically displaced daughters. Reducing the cellular aspect ratio to minimize the height difference between interphase and mitotic cells disrupts interspersion, producing contiguous patches. Cellular aspect ratio is similarly a key parameter for division-coupled interspersion in the early mouse embryo, suggesting that this physical mechanism for patterning progeny may pertain to many mammalian epithelia. Our results reveal that the process of cytokinesis in elongated mammalian epithelia allows lineages to intermix and that cellular aspect ratio is a critical modulator of the progeny pattern.


Assuntos
Linhagem da Célula/fisiologia , Citocinese/fisiologia , Células Epiteliais/fisiologia , Epitélio/fisiologia , Animais , Padronização Corporal/fisiologia , Divisão Celular/fisiologia , Embrião de Mamíferos/citologia , Embrião de Mamíferos/embriologia , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Epitélio/embriologia , Feminino , Masculino , Mamíferos/embriologia , Mamíferos/fisiologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Confocal , Imagem com Lapso de Tempo/métodos
4.
Development ; 141(3): 585-93, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24401373

RESUMO

Over the course of development, the vertebrate heart undergoes a series of complex morphogenetic processes that transforms it from a simple myocardial epithelium to the complex 3D structure required for its function. One of these processes leads to the formation of trabeculae to optimize the internal structure of the ventricle for efficient conduction and contraction. Despite the important role of trabeculae in the development and physiology of the heart, little is known about their mechanism of formation. Using 3D time-lapse imaging of beating zebrafish hearts, we observed that the initiation of cardiac trabeculation can be divided into two processes. Before any myocardial cell bodies have entered the trabecular layer, cardiomyocytes extend protrusions that invade luminally along neighboring cell-cell junctions. These protrusions can interact within the trabecular layer to form new cell-cell contacts. Subsequently, cardiomyocytes constrict their abluminal surface, moving their cell bodies into the trabecular layer while elaborating more protrusions. We also examined the formation of these protrusions in trabeculation-deficient animals, including erbb2 mutants, tnnt2a morphants, which lack cardiac contractions and flow, and myh6 morphants, which lack atrial contraction and exhibit reduced flow. We found that, compared with cardiomyocytes in wild-type hearts, those in erbb2 mutants were less likely to form protrusions, those in tnnt2a morphants formed less stable protrusions, and those in myh6 morphants extended fewer protrusions per cell. Thus, through detailed 4D imaging of beating hearts, we have identified novel cellular behaviors underlying cardiac trabeculation.


Assuntos
Ventrículos do Coração/anatomia & histologia , Ventrículos do Coração/citologia , Imageamento Tridimensional/métodos , Morfogênese , Miócitos Cardíacos/citologia , Animais , Extensões da Superfície Celular/metabolismo , Ventrículos do Coração/crescimento & desenvolvimento , Miócitos Cardíacos/metabolismo , Peixe-Zebra/crescimento & desenvolvimento
5.
Cold Spring Harb Protoc ; 2010(3): pdb.prot5399, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20194468

RESUMO

Total internal reflection fluorescence microscopy (TIRFM) allows fluorescent molecules on or near the plasma membrane to be visualized with a very high signal-to-noise ratio. This strategy has been very successful for imaging molecular machines as they move and do work. We provide here a general protocol for imaging single molecular motors as they move along microtubule tracks. Our protocol is designed for the study of cytoplasmic dynein purified from Saccharomyces cerevisiae, but it represents a general framework for any in vitro single-molecule assay.


Assuntos
Membrana Celular/química , Citoplasma/química , Processamento de Imagem Assistida por Computador/métodos , Microscopia de Fluorescência/métodos , Proteínas Motores Moleculares/análise , Dineínas/análise , Proteínas de Saccharomyces cerevisiae/análise
6.
J Cell Biol ; 177(6): 1005-15, 2007 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-17576797

RESUMO

The eukaryotic spindle assembly checkpoint (SAC) monitors microtubule attachment to kinetochores and prevents anaphase onset until all kinetochores are aligned on the metaphase plate. In higher eukaryotes, cytoplasmic dynein is involved in silencing the SAC by removing the checkpoint proteins Mad2 and the Rod-Zw10-Zwilch complex (RZZ) from aligned kinetochores (Howell, B.J., B.F. McEwen, J.C. Canman, D.B. Hoffman, E.M. Farrar, C.L. Rieder, and E.D. Salmon. 2001. J. Cell Biol. 155:1159-1172; Wojcik, E., R. Basto, M. Serr, F. Scaerou, R. Karess, and T. Hays. 2001. Nat. Cell Biol. 3:1001-1007). Using a high throughput RNA interference screen in Drosophila melanogaster S2 cells, we have identified a new protein (Spindly) that accumulates on unattached kinetochores and is required for silencing the SAC. After the depletion of Spindly, dynein cannot target to kinetochores, and, as a result, cells arrest in metaphase with high levels of kinetochore-bound Mad2 and RZZ. We also identified a human homologue of Spindly that serves a similar function. However, dynein's nonkinetochore functions are unaffected by Spindly depletion. Our findings indicate that Spindly is a novel regulator of mitotic dynein, functioning specifically to target dynein to kinetochores.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Drosophila/metabolismo , Dineínas/metabolismo , Cinetocoros/metabolismo , Fuso Acromático/metabolismo , Animais , Proteínas de Ciclo Celular , Linhagem Celular , Drosophila melanogaster/fisiologia , Proteínas Mad2 , Metáfase , Complexos Multiproteicos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA