Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 359: 121077, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38718604

RESUMO

Tetrabromobisphenol A (TBBPA) and microplastics are emerging contaminants of widespread concern. However, little is known about the effects of combined exposure to TBBPA and microplastics on the physicochemical properties and microbial metabolism of anaerobic granular sludge. This study investigated the effects of TBBPA, polystyrene microplastics (PS MP) and polybutylene succinate microplastics (PBS MP) on the physicochemical properties, microbial communities and microbial metabolic levels of anaerobic granular sludge. The results showed that chemical oxygen demand (COD) removal of sludge was lowest in the presence of TBBPA alone and PS MP alone with 33.21% and 30.06%, respectively. The microorganisms promoted the secretion of humic substances under the influence of TBBPA, PS MP and PBS MP. The lowest proportion of genes controlling glycolytic metabolism in sludge was 1.52% when both TBBPA and PS MP were added. Microbial reactive oxygen species were increased in anaerobic granular sludge exposed to MPS. In addition, TBBPA treatment decreased electron transfer of the anaerobic granular sludge and disrupted the pathway of anaerobic microorganisms in acquiring adenosine triphosphate, and MPs attenuated the negative effects of TBBPA on the acetate methanogenesis process of the anaerobic granular sludge. This study provides a reference for evaluating the impact of multiple pollutants on anaerobic granular sludge.


Assuntos
Microplásticos , Bifenil Polibromatos , Esgotos , Bifenil Polibromatos/toxicidade , Bifenil Polibromatos/metabolismo , Microplásticos/toxicidade , Anaerobiose , Espécies Reativas de Oxigênio/metabolismo
2.
Bioresour Technol ; 378: 128998, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37011846

RESUMO

Influences of perfluoroalkyl substances on the performance and microbial metabolic pathways of constructed rapid infiltration systems are not fully understood. In this study, wastewater containing different concentrations of perfluorooctanoic acid (PFOA)/perfluorobutyric acid (PFBA) was treated in constructed rapid infiltration systems with coke as filler. The addition of 5 and 10 mg/L PFOA inhibited the removal of chemical oxygen demand (COD) (80.42%, 89.27%), ammonia nitrogen (31.32%, 41.14%), and total phosphorus (TP) (43.30%, 39.34%). Meanwhile, 10 mg/L PFBA inhibited TP removal of the systems. Based on X-ray photoelectron spectroscopy, the percentages of F- within the PFOA and PFBA groups were 12.91% and 48.46%, respectively. PFOA transformed Proteobacteria (71.79%) into the dominant phyla of the systems, whereas PFBA enriched Actinobacteria (72.51%). The PFBA up-regulated the coding gene of 6-phosphofructokinase by 14.44%, whereas PFOA down-regulated it by 4.76%. These findings provide insights into the toxicity of perfluoroalkyl substances on constructed rapid infiltration systems.


Assuntos
Coque , Fluorocarbonos , Microbiota , Poluentes Químicos da Água , Águas Residuárias , Fluorocarbonos/análise , Fluorocarbonos/química , Fósforo
3.
Sci Total Environ ; 865: 161178, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36581267

RESUMO

The negative effects of perfluorooctanoic acid (PFOA) on biological nitrogen removal performance in wastewater treatment plants, are receiving increasing attention due to the widespread reporting of this issue. In this study, pomelo peel iron-loaded biochar (Fe-PBC) was added to an anammox bioreactor to alleviate the negative effects of PFOA. Results showed that the addition of Fe-PBC increased the ammonia and nitrite removal efficiencies from 77.7 ± 9.6 % and 79.5 ± 5.6 % to 94.45 ± 5.1 % and 95.9 ± 5.0 %, respectively. In addition, Fe-PBC promoted the removal of PFOA from wastewater, increasing the PFOA removal efficiency from 5.2 % to 29.2 ± 4.3 % from 100 to 200 days. The introduction of iron-loaded biochar into the anammox bioreactor increased the CO ratio by 13.64 % by 150 days. In addition, a CO fitting peak was detected in the Fe-PBC, indicating that the Fe-PBC was loaded with microorganisms. Microbial community analysis showed a decrease in the relative abundances of Proteobacteria and Nitrospirae from 31 % and 3.4 % to 16.8 % and 0.9 %, respectively, while the relative abundance of Planctomycetes increased from 26.8 % to 44.1 %. Metagenomic analysis found that the functional genes hzsB and hdh increased from 98,666 ± 11,400 and 3190 ± 460 to 119,333 ± 15,534 and 138,650 ± 11,233 copy numbers/MLSS. The increase in anammox biomass may be attributed to the presence of iron, an essential element for the synthesis of key anammox enzyme. Furthermore, iron was also associated with the enhanced extracellular electron transfer in the anammox system induced by Fe-PBC.


Assuntos
Ferro , Esgotos , Esgotos/microbiologia , Metagenômica , Oxidação Anaeróbia da Amônia , Oxirredução , Reatores Biológicos/microbiologia , Nitrogênio , Desnitrificação
4.
Environ Sci Pollut Res Int ; 30(5): 13469-13482, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36131174

RESUMO

With the increase of wastewater discharge, the requirement of wastewater treatment technology is gradually increased. How to treat wastewater economically, while making the treatment process short, easy to manage and low running cost, is the focus of attention. Adsorption-biological coupling technology could make adsorption and biodegradation complement each other, which has coupled accumulation effect. In this study, with coke as the adsorbent, the efficiency of the adsorption-biological coupling reactor on the treatment of total phosphorus (TP), chemical oxygen demand (COD), and ammonia nitrogen (NH3-N) in domestic wastewater under different influent modes was investigated. Meanwhile, microbial community and metabolic pathways analysis of the reactor were carried out. Results showed that when the influent modes of the coupling reactor was once a day and the daily sewage treatment capacity was 2 L, the treatment efficiency of TP, COD, and NH3-N was the best. The removal rate of TP and NH3-N was 87.96% and 96.14%, respectively. The dominant phylum was Proteobacteria (39.84-44.49%), and the dominant genus was Sphingomonas (4.27-7.16%), and Gemmatimonas (1.27-3.58%). According to the metagenomic analysis, carbon metabolism process was evenly distributed in U (upper), M (middle), and L (lower) layers of the coupling reactor. Phosphate metabolism was mainly in the U layer at first, then in the M and L layers gradually. Carbon metabolism and phosphate metabolism provided sufficient energy for microbial degradation of pollutants. Nitrogen removal in the reactor mainly happened in the S and Z layers by nitrification (M00528) and denitrification (M00529), respectively.


Assuntos
Coque , Microbiota , Purificação da Água , Águas Residuárias , Eliminação de Resíduos Líquidos/métodos , Adsorção , Reatores Biológicos , Nitrificação , Nitrogênio/metabolismo , Carbono , Fósforo , Redes e Vias Metabólicas , Fosfatos , Desnitrificação , Esgotos/microbiologia
5.
J Hazard Mater ; 416: 126139, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34492928

RESUMO

To solve the problem of the slow growth of denitrifying anaerobic methane oxidation (DAMO) bacteria during the enrichment process, betaine was added as a growth factor and its influence on the mechanism of DAMO process along with the metagenomic analysis of the process in a MFC-granular sludge coupling system was explored. When the addition of betaine was increased to 0.5 g/L and 1.0 g/L, the NO3--N removal increased to 210 mg/L. Also, the increasing betaine dosage in 1st to 4th chambers resulted in a significant increase in dissolved methane concentration which reached a maximum value of 16.6 ± 1.19 mg/L. When the dosage of betaine was increased from 0 g/L to 1.0 g/L, the dominant bacterial phyla in the 1st to 4th chambers changed to Proteobacteria (20.8-50.7%) from Euryarchaeota (42.0-54.1%) and Methanothrix which was significantly decreased by 17.9-37.4%. There was a slight decline in the DAMO microorganism abundance, possibly due to the increased methyl donors limiting the DAMO microorganism growth. Denitrification metabolism pathway module (increased from 0.10% to 0.15%) of Nitrogen metabolism and Formaldehyde assimilation, and serine pathway of Methane metabolism presented an ascendant trend with the increased betaine dosage as determined by the metagenomics analysis of KEGG metabolism pathway.


Assuntos
Compostos de Amônio , Metano , Anaerobiose , Betaína , Reatores Biológicos , Desnitrificação , Peptídeos e Proteínas de Sinalização Intercelular , Metagenômica , Nitrogênio , Oxirredução , Esgotos
6.
Water Sci Technol ; 74(4): 844-51, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27533859

RESUMO

In this study, the dynamic adsorption of methylene blue dye onto CuO-acid modified sepiolite was investigated. Meanwhile, the equilibrium and kinetic data of the adsorption process were studied to understand the adsorption mechanism. Furthermore, a high-temperature gas stream was applied to regenerate the adsorbent. The results showed that the Langmuir isotherm model was applied to describe the adsorption process. The positive value of enthalpy change indicated that the adsorption process was endothermic in nature. In the dynamic adsorption process, the best adsorption performance was achieved when the ratio of column height to diameter was 2.56 and the treatment capacity was 6 BV/h. The optimal scenario for regeneration experiments was the regeneration temperature of 550-650 °C, the space velocity of 100 min(-1) and the regeneration time of 10 min. The effective adsorption of CuO-acid modified sepiolite was kept for 12 cycles of adsorption and regeneration.


Assuntos
Cobre/química , Silicatos de Magnésio/química , Azul de Metileno/química , Poluentes Químicos da Água/química , Adsorção , Temperatura Alta , Cinética , Regeneração , Termodinâmica , Purificação da Água/métodos
7.
Environ Sci Pollut Res Int ; 23(15): 15294-301, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27102621

RESUMO

An efficient adsorbent/catalyst Co and Fe-catalysts loaded on sepiolite (Co-Fe/sepiolite) was successfully prepared for high temperature gas flow catalytic reaction by a simple impregnation method. The impact of preparation conditions (such as pH value of impregnation solution, impregnation time, calcination temperature, and time) on catalytic activity was studied. We found that the catalytic activity of Co-Fe/sepiolite was strongly influenced by all the investigated parameters. The regeneration efficiency (RE) was used to evaluate the catalytic activity. The RE is more noticeable at pH 5.0 of impregnation solution, impregnation time 18 h, calcination temperature 650 °C, and calcination time 3 h. This Co-Fe/sepiolite has great adsorption capacity in absorbing dye. It is used for an adsorbent to adsorb dye from wastewater solution under dynamic adsorption and saturated with dye, then regenerated with high temperature gas flow for adsorption/oxidation cycles. The Co-Fe/sepiolite acts as a catalyst to degrade the dye during regeneration under high temperature gas flow. Hence, the Co-Fe/sepiolite is not only an adsorbent but also a catalyst. The Co-Fe/sepiolite is more stable than sepiolite when applied in the treatment of plant's wastewater. The Co-Fe/sepiolite can be reused in adsorption-regeneration cycle. The results indicate the usability of the proposed combined process, dye adsorption on Co-Fe/sepiolite followed by the catalytic oxidation in high temperature gas flow.


Assuntos
Cobalto/química , Corantes/química , Violeta Genciana/química , Ferro/química , Silicatos de Magnésio/química , Adsorção , Catálise , Temperatura Alta , Concentração de Íons de Hidrogênio , Oxirredução
8.
Bioresour Technol ; 200: 1065-72, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26555241

RESUMO

Both short-term and long-term exposure experiments have been carried out to investigate the influence of iron (Fe)-manganese (Mn)-sepiolite, as a heterogeneous Fenton-like catalyst, on the performance and microbial community of anaerobic granular sludge. During the short-term exposure experiments, chemical oxygen demand (COD) removal efficiency decreased from 73.1% to 64.1% with the presence of 100mg/L of catalyst. However, long-term exposure to the catalyst did not significantly affect the COD removal efficiency (81.8%) as compared to the control (83.5%). Meanwhile, the absorption peaks of coenzyme F420 in extracellular polymeric substances (EPS) of sludge samples were remarkable by excitation-emission matrix (EEM) fluorescence spectra. After long-term exposure, the presence of the catalyst increased secretions of EPS from 83.7mg/g VSS to 89.1mg/g VSS. Further investigations with high throughput sequencing indicated that the abundance of Methanosaeta increased from 57.7% to 70.4% after long-term exposure. In bacterial communities, Proteobacteria, Firmicutes, and Synergistetes were predominant.


Assuntos
Ferro/química , Silicatos de Magnésio/química , Manganês/química , Consórcios Microbianos/fisiologia , Esgotos/microbiologia , Eliminação de Resíduos Líquidos/instrumentação , Anaerobiose , Bactérias/metabolismo , Análise da Demanda Biológica de Oxigênio , Catálise , Peróxido de Hidrogênio/química , Polímeros/química , Espectrometria de Fluorescência , Eliminação de Resíduos Líquidos/métodos
9.
J Insect Sci ; 152015.
Artigo em Inglês | MEDLINE | ID: mdl-26516167

RESUMO

A new gall wasp species, Dryocosmus zhuili Liu et Zhu, is herein described from the southeastern Fujian province of China. The new species induces galls on trees of Henry's chestnut, Castanea henryi, which is also a native host for the notorious Oriental chestnut gall wasp (OCGW, Dryocosmus kuriphilus Yasumatsu). D. zhuili overlaps with OCGW in emergence time and induces galls morphologically similar to that of OCGW on similar plant parts. In a previous study, we reported considerable divergence between mtDNA CO1 (mitochondrial DNA Cytochrome c oxidase subunit I) sequences of these wasps and the true OCGW wasps and suggested the existence of a cryptic species. Herein, we confirm the identity of the new species based on morphological and biological differences and provide a formal description. Although the new species is relatively easily separated from OCGW on basis of morphology, field identification involving the two species can still be problematic because of their small body size, highly similar gall morphology, and other life history traits. We further discussed the potential of the new species to be a pest for the chestnut industry and the consequences of accidental introduction of this species into nonnative areas, especially with regard to the bisexual reproduction mode of the new species in contrast to the parthenogenetic reproduction mode of OCGW.


Assuntos
Fagaceae/parasitologia , Vespas/classificação , Animais , China , Folhas de Planta/parasitologia , Tumores de Planta/parasitologia , Reprodução/fisiologia , Vespas/anatomia & histologia , Vespas/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA