Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
JACS Au ; 4(2): 441-453, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38425924

RESUMO

A small chemical modification of the nucleobase structure can significantly enhance the photoactivity of DNA, which may incur DNA damage, thus holding promising applications in photochemotherapy treatment of cancers or pathogens. However, single substitution confers only limited phototoxicity to DNA. Herein, we combine femtosecond and nanosecond time-resolved spectroscopy with high-level ab initio calculations to disentangle the excited-state dynamics of 6-methylthioguanine (me6-TG) under variable wavelength UVA excitation (310-330 nm). We find that double substitution of nucleobases (thionation and methylation) boosts the photoactivity by introducing more reactive channels. Intriguingly, 1nNπ*, rather than 1nSπ*, acts as the doorway state engendering the formation of the long-lived reactive triplet state in me6-TG. The 1nNπ* induces a low spin-orbit coupling of 8.3 cm-1, which increases the intersystem crossing (ISC) time (2.91 ± 0.14 ns). Despite the slowed ISC, the triplet quantum yield (ΦT) still accounts for a large fraction (0.6 ± 0.1), consistent with the potential energy surface that favors excited-state bifurcation to 1nNπ*min (3.36 ± 0.15 ps) rather than 1ππ*min (5.05 ± 0.26 ps), such that the subsequent ISC to triplet via 1nNπ*min constitutes the main relaxation pathway in me6-TG. Although this ΦT is inferior to its single-substituted predecessor 6-thioguanine (6-TG, 0.8 ± 0.2), the effect of thionation in synergy with methylation opens a unique C-S bond cleavage pathway through crossing to a repulsive 1πσ* state, generating thiyl radicals as highly reactive intermediates that may invoke biological damage. This photodissociation channel is extremely difficult for conventional nucleobases. These findings demonstrate the synergistic effects of double functionality substitution in modulating excited-state dynamics and enhancing the photolabile character of DNA nucleobases, providing inspirations for the rational design of advanced photodynamic and photochemotherapy approaches.

2.
J Phys Chem Lett ; 14(47): 10585-10591, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37976464

RESUMO

Dramatic fluorescence quenching of small heterocyclic ligands trapped in the abasic site (AP) of DNA has been implemented as an unprecedented strategy recognizing single-base mutations in sequence analysis of cancer genes. However, the key mechanisms governing selective nucleobase recognition remain to be disentangled. Herein, we perform fluorescence quenching dynamics studies for 2-amino-7-methyl-1,8-naphthyridine (AMND) in well-designed AP-containing DNA single/double strands. The primary mechanism is discovered, showing that AMND only targets cytosine to form a pseudo-base pair, and therefore, fluorescence quenching of AMND arises through the DNA-mediated electron transfer (ET) between excited state AMND* and flanking nucleobases, most favorably with flanking guanines. Subtle dynamic conformational variations induced by different flanking nucleobases are revealed and found to modulate efficiencies of electron transfer and fluorescence quenching. These findings provide critical mechanistic insights for guiding the design of photoinduced electron transfer (PET)-based fluorescent ligands as sensitive single-base recognition reporters.


Assuntos
DNA , Naftiridinas , DNA de Cadeia Simples , Corantes Fluorescentes , Ligantes , Espectrometria de Fluorescência
3.
Phytomedicine ; 121: 155117, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37820467

RESUMO

BACKGROUND: Effective drugs for the treatment of hepatic fibrosis have not yet been identified. Isovitexin (IVT) is a promising hepatoprotective agent owing to its efficacy against acute liver injury. However, the role of IVT in liver fibrosis has not been reported. PURPOSE: To explore the effect of IVT on liver fibrosis both in vitro and in vivo. STUDY DESIGN AND METHODS: A mouse model of liver fibrosis induced by carbon tetrachloride (CCl4) and two types of hepatic stellate cell models induced by platelet-derived growth factor-BB (PDGF-BB) were established to evaluate the effect of IVT on hepatic fibrosis. Transcriptomics and metabolomics were used to predict the underlying targets of IVT and were validated by a combination of in vitro and in vivo experiments. Exploration of miRNA and N6-methyladenosine (m6A) modifications was also carried out to detect the key upstream targets of the above targets. RESULTS: IVT reduced collagen deposition and hepatic stellate cell activation to alleviate liver fibrosis. The transcriptomics and metabolomics analyses showed that phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) signaling and the glutathione (GSH) metabolic pathway may be the main regulatory processes of IVT in hepatic fibrosis. Both the in vitro and in vivo experiments confirmed the inhibitory effect of IVT on the PTEN-PI3K-Akt-mTOR axis and activation of the GSH metabolic pathway. A miR-21 mimic inhibited the effects of IVT on these two pathways, suggesting that miR-21 is the hub for IVT regulation of PI3K-Akt signaling and the GSH metabolic pathway. IVT also increased pri-miR-21 level and reduced the m6A enrichment of pri-miR-21, demonstrating that IVT may regulate pri-miR-21 through m6A modification, thereby affecting the maturation of miR-21. CONCLUSION: This study is the first to propose a protective effect of IVT against liver fibrosis. The mechanism of IVT against hepatic fibrosis is based on the regulation of miR-21, targeting PTEN-Akt signaling and the GSH metabolic pathway, which is also a novel discovery.


Assuntos
MicroRNAs , Proteínas Proto-Oncogênicas c-akt , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Transcriptoma , Cirrose Hepática/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Glutationa/metabolismo , Redes e Vias Metabólicas , Células Estreladas do Fígado
4.
J Chem Phys ; 158(4): 045101, 2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36725513

RESUMO

Triplex DNA structure has potential therapeutic application in inhibiting the expression of genes involved in cancer and other diseases. As a DNA-targeting antitumor and antibiotic drug, coralyne shows a remarkable binding propensity to triplex over canonical duplex and thus can modulate the stability of triplex structure, providing a prospective gene targeting strategy. Much less is known, however, about coralyne-binding interactions with triplex. By combining multiple steady-state spectroscopy with ultrafast fluorescence spectroscopy, we have investigated the binding behaviors of coralyne with typical triplexes. Upon binding with a G-containing triplex, the fluorescence of coralyne is markedly quenched owing to the photoinduced electron transfer (PET) of coralyne with the G base. Systematic studies show that the PET rates are sensitive to the binding configuration and local microenvironment, from which the coexisting binding modes of monomeric (full and partial) intercalation and aggregate stacking along the sugar-phosphate backbone are distinguished and their respective contributions are determined. It shows that coralyne has preferences for monomeric intercalation within CGG triplex and pure TAT triplex, whereas CGC+ triplex adopts mainly backbone binding of coralyne aggregates due to charge repulsion, revealing the sequence-specific binding selectivity. The triplex-DNA-induced aggregation of coralyne could be used as a probe for recognizing the water content in local DNA structures. The strong π-π stacking of intercalated coralyne monomer with base-triplets plays an important role in stabilizing the triplex structure. These results provide mechanistic insights for understanding the remarkable propensity of coralyne in selective binding to triplex DNA and shed light on the prospective applications of coralyne-triplex targeted anti-gene therapeutics.


Assuntos
DNA , Espectrometria de Fluorescência , Desnaturação de Ácido Nucleico , Conformação de Ácido Nucleico , DNA/química
5.
Front Pharmacol ; 13: 965131, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36249790

RESUMO

Daphnoretin (DAP), isolated from a traditional Chinese medicine Wikstroemia indica (Linn. C. A. Meyer), could induce apoptosis of hepatocellular cancer (HCC) and inhibit tumor growth. However, the application of DAP in cancer therapies was hampered because to its poor solubility. Herein, this study aimed to design an approach of double-targeted nano-preparation to enable the delivery of DAP to potentiate the therapeutical efficacy in liver cancer via glycyrrhetinic acid-polyethylene glycol-block-poly (D,L-lactic acid)/polyethylene glycol-block-poly (D,L-lactic acid)-DAP (GPP/PP-DAP). In particular, the purity of separated DAP was up to 98.12% for preparation research. GPP/PP-DAP was successfully prepared by the thin-film hydration method. Subsequently, the GPP/PP-DAP was optimized by univariate analysis and the response surface methodology, producing a stable and systemically injectable nano-preparation. Impressively, on the one hand, cytotoxicity studies showed that the IC50 of the GPP/PP-DAP was lower than that of free DAP. On the other hand, the GPP/PP-DAP was more likely to be endocytosed by HepG2 cells and targeted to the liver with orthotopic tumors, potentiating the therapeutical efficacy in HCC. Collectively, both in vitro and in vivo results indicated the excellent tumor inhibition and liver targeting of GPP/PP-DAP, suggesting the nano-preparation could serve as a potential drug delivery system for natural ingredients with anti-hepatoma activity to lay the theoretical foundation for clinical application.

6.
Int Urol Nephrol ; 54(10): 2467-2476, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35841489

RESUMO

PURPOSE: Reminiscence therapy is reported to attenuate the psychological disorders in cancer patients, such as colorectal and lung cancer patients. However, relevant report on surgical prostate cancer patients is scarce. This study put forward a reminiscence therapy-based care program (RTCP + UC) combing reminiscence therapy with usual care (UC), and aimed to evaluate the impact of RTCP + UC on anxiety, depression, quality of life and survival in surgical prostate cancer patients. METHODS: Totally, 108 prostate cancer patients receiving surgical resection were enrolled, who were subsequently randomized and allocated to the RTCP + UC group (N = 55) and UC group (N = 53) at a 1:1 ratio. Hospital Anxiety and Depression Scale (HADS) and QLQ-C30 were assessed at month M0, M3, M6, M9 and M12 during the intervention period. After intervention, patients were followed up for another 24 months to calculate disease-free survival (DFS) and overall survival (OS). RESULTS: RTCP + UC decreased HADS-anxiety score at M9 and M12, declined HADS-depression score at M6, M9 and M12, reduced depression rate and the severity level of depression at M12, while did not affect these issues at other time points. Meanwhile, RTCP + UC enhanced the QLQ-C30 global health status score at M3, M6, M9 and M12, but did not influence the QLQ-C30 function score and QLQ-C30 symptom score at any time points. Meanwhile, RTCP + UC had no effect on the accumulating DFS and OS of surgical prostate cancer patients. CONCLUSION: RTCP + UC serves as an optional nursing modality in alleviating anxiety and depression, improving quality of life in surgical prostate cancer patients.


Assuntos
Neoplasias da Próstata , Qualidade de Vida , Ansiedade/etiologia , Ansiedade/terapia , Depressão/terapia , Nível de Saúde , Humanos , Masculino , Neoplasias da Próstata/cirurgia , Qualidade de Vida/psicologia
7.
Front Genet ; 13: 872224, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35620462

RESUMO

Hepatocellular carcinoma (HCC) is a malignant tumor with high morbidity and mortality worldwide. Many studies have shown that dedicator of cytokinesis 2 (DOCK2) has a crucial role as a prognostic factor in various cancers. However, the potentiality of DOCK2 in the diagnosis of HCC has not been fully elucidated. In this work, we aimed to investigate the prognostic role of DOCK2 mutation in HCC. The Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC) cohorts were utilized to identify the mutation frequency of DOCK2. Then, univariate Cox proportional hazard regression analysis, random forest (RF), and multivariate Cox regression analysis were performed to develop the risk score that was significantly related to DOCK2 mutation. Moreover, Gene Set Enrichment Analysis (GSEA), Gene Set Variation Analysis (GSVA), and immune correlation analysis were conducted for an in-depth study of the biological process of DOCK2 mutation involved in HCC. The results revealed that the mutation frequency of DOCK2 was relatively higher than that in non-cancer control subjects, and patients with DOCK2 mutations had a low survival rate and a poor prognosis compared with the DOCK2-wild group. In addition, the secretin receptor (SCTR), tetratricopeptide repeat, ankyrin repeat and coiled-coil domain-containing 1 (TANC1), Alkb homolog 7 (ALKBH7), FRAS1-related extracellular matrix 2 (FREM2), and G protein subunit gamma 4 (GNG4) were found to be the most relevant prognostic genes of DOCK2 mutation, and the risk score based on the five genes played an excellent role in predicting the status of survival, tumor mutation burden (TMB), and microsatellite instability (MSI) in DOCK2 mutant patients. In addition, DOCK2 mutation and the risk score were closely related to immune responses. In conclusion, the present study identifies a novel prognostic signature in light of DOCK2 mutation-related genes that shows great prognostic value in HCC patients; and this gene mutation might promote tumor progression by influencing immune responses. These data may provide valuable insights for future investigations into personalized forecasting methods and also shed light on stratified precision oncology treatment.

8.
J Phys Chem B ; 126(1): 14-22, 2022 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-34951313

RESUMO

The nucleobase analog 6-thioguanine (6-TG) has emerged as important immunosuppressant, anti-inflammatory, and anticancer drug in the past few decades, but its unique photosensitivity of absorbing strongly ultraviolet UVA light elicits photochemical hazards in many ways. The particularly intriguing yet unresolved question is whether the direct photoreaction of 6-TG can promote DNA-protein cross-links (DPCs) formation, which are large DNA adducts blocking DNA replication and physically impede DNA-related processes. Herein, by real-time observation of radical intermediates using time-resolved UV-vis absorption spectroscopy in conjunction with product analysis by HPLC-MS, we discover that UVA excitation of 6-TG triggers direct covalent cross-linking with tryptophan (TrpH) via an exquisite radical mechanism of electron transfer. The photoexcitation prepares the redox-active triplet 36-TG*, which initiates electron transfer with TrpH, creating TrpH•+ and 6-TG•- in the first step. The deprotonated Trp• undergoes radical-recombination with its geminate partner 6-TG•- and eliminates a H2S, leading to the cross-linking product 6-TG-Trp. The photoadduct structures (two chiral isomers and one constitutional isomer) are identified unambiguously, validating further the mechanism. These findings pinpoint the exact amino acid that is vulnerable to photo-cross-linking with 6-TG and establish a mechanistic framework for understanding mutagenic DPCs formation and developing photoprobes based on this new type of photo-cross-linking.


Assuntos
Tioguanina , Triptofano , DNA , Transporte de Elétrons , Elétrons
9.
Free Radic Biol Med ; 171: 69-79, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-33957221

RESUMO

Developing the cell-impermeable Ru(II) polypyridyl cationic complexes as effective photosensitizers (PS) which have high cellular uptake and photo-toxicity, but low dark toxicity, is quite challenging. Here we found that the highly reactive singlet oxygen (1O2) can be generated by the irradiation of a typical Ru(II) polypyridyl complex Ru(II)tris(tetramethylphenanthroline) ([Ru(TMP)3]2+) under visible light irradiation by ESR with TEMPO (2,2,6,6-tetramethyl-4-piperidone-N-oxyl) as 1O2 probe. Effective cellular and nuclear delivery of cationic [Ru(TMP)3]2+ was achieved through our recently developed ion-pairing method, and 2,3,4,5-tetrachlorophenol (2,3,4,5-TeCP) was found to be the most effective among all chlorophenols tested. The accelerated cellular, especially nuclear uptake of [Ru(TMP)3]2+ results in the formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) and DNA strand breaks, caspase 3/7 activation and cell apoptosis in HeLa cells upon light irradiation. More importantly, compared with other traditional photosensitizers, [Ru(TMP)3]2+ showed significant photo-toxicity but low dark toxicity. Similar effects were observed when 2,3,4,5-TeCP was substituted by the currently clinically used anti-inflammatory drug flufenamic acid. This represents the first report that the cell-impermeable Ru(II) polypyridyl complex ion-paired with suitable lipophilic counter-anions functions as potent intracellular photosensitizer under visible light irradiation mainly via a 1O2-mediated mechanism. These findings should provide new perspectives for future investigations on other metal complexes with similar characteristics as promising photosensitizers for potential photodynamic therapy.


Assuntos
Complexos de Coordenação , Rutênio , Ânions , Complexos de Coordenação/farmacologia , Células HeLa , Humanos , Luz , Fármacos Fotossensibilizantes/farmacologia , Rutênio/farmacologia
10.
Commun Chem ; 4(1): 68, 2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-36697709

RESUMO

The triplet metal to ligand charge transfer (3MLCT) luminescence of ruthenium (II) polypyridyl complexes offers attractive imaging properties, specifically towards the development of sensitive and structure-specific DNA probes. However, rapidly-deactivating dark state formation may compete with 3MLCT luminescence depending on different DNA structures. In this work, by combining femtosecond and nanosecond pump-probe spectroscopy, the 3MLCT relaxation dynamics of [Ru(phen)2(dppz)]2+ (phen = 1,10-phenanthroline, dppz = dipyridophenazine) in two iconic G-quadruplexes has been scrutinized. The binding modes of stacking of dppz ligand on the terminal G-quartet fully and partially are clearly identified based on the biexponential decay dynamics of the 3MLCT luminescence at 620 nm. Interestingly, the inhibited dark state channel in ds-DNA is open in G-quadruplex, featuring an ultrafast picosecond depopulation process from 3MLCT to a dark state. The dark state formation rates are found to be sensitive to the content of water molecules in local G-quadruplex structures, indicating different patterns of bound water. The unique excited state dynamics of [Ru(phen)2(dppz)]2+ in G-quadruplex is deciphered, providing mechanistic basis for the rational design of photoactive ruthenium metal complexes in biological applications.

11.
Oncol Lett ; 20(5): 159, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32934727

RESUMO

Bioinformatics analyses have shown that transmembrane and coiled-coil domain 1 (TMCO1) may be associated with lung adenocarcinoma. However, to the best of our knowledge, no current research has determined whether TMCO1 is involved in the development of lung adenocarcinoma. The present study aimed to identify the association between TMCO1 and lung adenocarcinoma. The present study demonstrated that the positive immunohistochemical staining of TMCO1 in lung adenocarcinoma tissues was significantly higher compared with paracarcinoma tissues. Additionally, knockdown of TMCO1 was demonstrated to downregulate B-cell lymphoma-2 protein expression levels and upregulate cysteinyl aspartate specific proteinase (caspase)-3 and caspase-9 protein expression levels in A549 cells. These changes resulted in decreased apoptosis of A549 cells uponTMCO1 downregulation. In addition, knockdown of TMCO1 decreased matrix metalloproteinase (MMP)-2 and MMP-9 expression levels. The expression of N-cadherin and vimentin also decreased. By contrast, the expression levels of E-cadherin protein increased. Knockdown of TMCO1 resulted in the inhibition of A549 cell migration. The results of the present study demonstrated that TMCO1 was associated with lung adenocarcinoma and that inhibition of TMCO1 expression levels negatively regulated the apoptosis and migration of lung adenocarcinoma cells. Therefore, the present study suggests the potential for TMCO1 to be used in the clinical treatment of lung adenocarcinoma.

12.
J Phys Chem A ; 124(29): 6076-6083, 2020 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-32585092

RESUMO

Proton transfer is regarded as a fundamental process in chemical reactions of DNA molecules and continues to be an active research theme due to the connection with charge transport and oxidation damage of DNA. For the guanine radical cation (G•+) derived from one-electron oxidation, experiments suggest a facile proton transfer within the G•+:C base pair, and a rapid deprotonation from N1 in free base or single-strand DNA. To address the deprotonation mechanism, we perform a thorough investigation on deprotonation of G•+ in free G base by combining density functional theory (DFT) and laser flash photolysis spectroscopy. Experimentally, kinetics of deprotonation is monitored at temperatures varying from 280 to 298 K, from which the activation energy of 15.1 ± 1.5 kJ/mol is determined for the first time. Theoretically, four solvation models incorporating explicit waters and the polarized continuum model (PCM), i.e., 3H2O-PCM, 4H2O-PCM, 5H2O-PCM, and 7H2O-PCM models are used to calculate deprotonation potential energy profile, and the barriers of 5.5, 13.4, 14.4, and 13.7 kJ/mol are obtained, respectively. It is shown that at least four explicit waters are required for properly simulating the deprotonation reaction, where the participation of protonated water cluster plays key roles in facilitating the proton release from G•+.


Assuntos
Guanina/química , Prótons , Dano ao DNA , Guanina/metabolismo , Modelos Moleculares , Conformação Molecular , Oxirredução , Teoria Quântica
13.
J Chem Phys ; 152(3): 035101, 2020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-31968979

RESUMO

One-electron oxidation of adenine (A) leads initially to the formation of adenine radical cation (A•+). Subsequent deprotonation of A•+ can provoke deoxyribonucleic acid (DNA) damage, which further causes senescence, cancer formation, and even cell death. However, compared with considerable reports on A•+ reactions in free deoxyadenosine (dA) and duplex DNA, studies in non-B-form DNA that play critical biological roles are rare at present. It is thus of vital importance to explore non-B-form DNA, among which the triplex is an emerging topic. Herein, we investigate the deprotonation behavior of A•+ in the TAT triplex with continuous A bases by time-resolved laser flash photolysis. The rate constants for the one-oxidation of triplex 8.4 × 108 M-1 s-1 and A•+ deprotonation 1.3 × 107 s-1 are obtained. The kinetic isotope effect of A•+ deprotonation in the TAT triplex is 1.8, which is characteristic of a direct release of the proton into the solvent similar to free base dA. It is thus elucidated that the A•+ proton bound with the third strand is most likely to be released into the solvent because of the weaker Hoogsteen H-bonding interaction and the presence of the highly mobile hydration waters within the third strand. Additionally, it is confirmed through Fourier transform infrared spectroscopy that the deprotonation of A•+ results in the dissociation of the third strand and disruption of the secondary structure of the triplex. These results provide valuable kinetic data and in-depth mechanistic insights for understanding the adenine oxidative DNA damage in the triplex.


Assuntos
Adenina/química , DNA/química , Elétrons , Timina/química , Ligação de Hidrogênio , Oxirredução
14.
Chem Sci ; 11(31): 8204-8213, 2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34123091

RESUMO

We report here porphodilactol derivatives and their corresponding metal complexes. These systems show promise as "all-in-one" phototheranostics and are predicated on a design strategy that involves controlling the relationship between intersystem crossing (ISC) and photothermal conversion efficiency following photoexcitation. The requisite balance was achieved by tuning the aromaticity of these porphyrinoid derivatives and forming complexes with one of two lanthanide cations, namely Gd3+ and Lu3+. The net result led to a metalloporphodilactol system, Gd-trans-2, with seemingly optimal ISC efficiency, photothermal conversion efficiency and fluorescence properties, as well as good chemical stability. Encapsulation of Gd-trans-2 within mesoporous silica nanoparticles (MSN) allowed its evaluation for tumour diagnosis and therapy. It was found to be effective as an "all-in-one" phototheranostic that allowed for NIR fluorescence/photoacoustic dual-modal imaging while providing an excellent combined PTT/PDT therapeutic efficacy in vitro and in vivo in 4T1-tumour-bearing mice.

15.
J Phys Chem Lett ; 10(9): 2143-2150, 2019 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-30995046

RESUMO

Human telomeric RNA (TERRA) containing thousands of G-rich repeats has the propensity to form parallel-stranded G-quadruplexes. The emerging crucial roles of TERRA G-quadruplexes in RNA biology fuel increasing attention for studying anticancer ligand binding with such structures, which, however, remains scarce. Here we utilized multiple steady-state and time-resolved spectroscopy analyses in conjunction with NMR methods and investigated thoroughly the binding behavior of TMPyP4 to a TERRA G-quadruplex dimer formed by the 10-nucleotide sequence r(GGGUUAGGGU). It is clearly identified that TMPyP4 intercalates into the 5'-5' stacking interface of two G-quadruplex blocks with a binding stoichiometry of 1:1 and binding constant of 1.92 × 106 M-1. This is consistent with the unique TERRA structural features of the enlarged π-π stacking plane of the A·(G·G·G·G)·A hexad at 5'-ends of each G-quadruplex block. The preferential binding of π-ligand porphyrin to the 5'-5' stacking interface of the native TERRA G-quadruplex dimer is first ascertained by the combination of dynamics and structural characterization.


Assuntos
Quadruplex G , Substâncias Intercalantes/química , Porfirinas/química , RNA/química , Telômero/química , Sequência de Bases , Dimerização , Humanos , Cinética , Ligantes , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade
16.
Chemphyschem ; 20(5): 757-765, 2019 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-30702794

RESUMO

Azabases are intriguing DNA and RNA analogues and have been used as effective antiviral and anticancer medicines. However, photosensitivity of these drugs has also been reported. Here, pH-controlled intersystem crossing (ISC) process of 9H 8-azaadenine (8-AA) in aqueous solution is reported. Broadband transient absorption measurements reveal that the hydrogen atom at N9 position can greatly affect ISC of 8-AA and ISC is more favorable when 8-AA is in its neutral form in aqueous solution. The initial excited ππ* (S2 ) state evolves through ultrafast internal conversion (IC) (4.2 ps) to the lower-lying nπ* state (S1 ), which further stands as a door way state for ISC with a time constant of 160 ps. The triplet state has a lifetime of 6.1 µs. On the other hand, deprotonation at N9 position promotes the IC from the ππ* (S2 ) state to the ground state (S0 ) and the lifetime of the S2 state is determined to be 10 ps. The experimental results are further supported by time-dependent density functional theory (TDDFT) calculations. Singlet oxygen generation yield is measured to be 13.8 % for the neutral 8-AA while the deprotonated one exhibit much lower yield (<2 %), implying that this compound could be a potential pH-sensitized photodynamic therapy agent.

17.
Sci Rep ; 7(1): 10951, 2017 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-28887497

RESUMO

The interaction of ligands with G-quadruplexes has attracted considerable attention due to its importance in molecular recognition and anticancer drugs design. Here, we utilize triplet excited state as a sensitive reporter to study the binding interaction of zinc cationic porphyrin (ZnTMPyP4) with three G-quadruplexes, AG3(T2AG3)3, (G4T4G4)2, and (TG4T)4. By monitoring the triplet decay dynamics of ZnTMPyP4 with transient absorption spectroscopy, the coexisted binding modes via π-π stacking of porphyrin macrocycle and the G-quartets are allowed to be identified quantitatively, which involve intercalation (25% and 36%) versus end-stacking (75% and 64%) for AG3(T2AG3)3 and (G4T4G4)2, and end-stacking (23%) versus partial intercalation (77%) for (TG4T)4. It is shown that the steric hindrance of the axial water decreases greatly the percentage of intercalation. Further, a rapid assessment of binding stoichiometry is fulfilled by measuring the triplet decay dynamics under various [G-quadruplex]/[ZnTMPyP4] ratios. The binding stoichiometric ratios of G-quadruplex/ZnTMPyP4 are 1:2 for AG3(T2AG3)3, 1:1 for (G4T4G4)2, and 1:2 for (TG4T)4, which agree well with results obtained by the conventional method of continuous variation analysis. These results reveal a clear scenario of G-quadruplex/ZnTMPyP4 interaction and provide mechanistic insights for the application of anticancer drug designs using G-quadruplex as target.

18.
Chem Asian J ; 12(13): 1578-1586, 2017 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-28485108

RESUMO

G-rich and C-rich DNA can fold into the tetrastranded helical structures G quadruplex or C quadruplex (i-motif), which are considered to be specific drug targets for cancer therapy. A large number of small molecules (so-called ligands), which can bind and modulate the stability of G quadruplex structures, have been widely examined. Much less is known, however, about the ligand binding interactions with the C quadruplex (i-motif). By combining steady-state measurements (UV/Vis, fluorescence, and induced circular dichroism (ICD)) with time-resolved laser flash photolysis spectroscopy, we have studied the binding interactions of cationic porphyrin (5,10,15,20-tetrakis(N-methylpyridinium-4-yl)-21 H,23 H-porphyrin, abbreviated as TMPyP4) with i-motifs (C3 TA2 )3 C3 T and (C4 A4 C4 )2. The intercalation binding mode through π-π stacking of the porphyrin macrocycle and the C:C+ hemiprotonated base pair has been identified for the first time. The coexistent binding modes of intercalation (≈80 %) versus external major-groove binding (≈20 %) have been determined quantitatively, thereby allowing a fuller understanding of the porphyrin-i-motif interactions. The ionic strength was found to play an important role in affecting affects the binding modes, with the progressive increase in the ionic strength resulting in the gradual decrease in the intercalation percentage and an increase in the groove-binding percentage. Furthermore, an extended study of the porphyrin derivative with four bulky side-arm substituents (T4) suggests a complete prohibition of the intercalation mode owing to large steric hindrance, thereby providing a novel groove-binding ligand with site selectivity. These results provide in-depth mechanistic insights to better understand the ligand interactions with i-motifs and guidance for related applications in anticancer drug design.


Assuntos
Antineoplásicos/farmacologia , Motivos de Nucleotídeos/efeitos dos fármacos , Porfirinas/química , Antineoplásicos/síntese química , Antineoplásicos/química , Sítios de Ligação/efeitos dos fármacos , Ligantes , Estrutura Molecular
19.
J Chem Phys ; 146(2): 025103, 2017 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-28088146

RESUMO

5-Iodouracil (5-IU) can be integrated into DNA and acts as a UV sensitive chromophore suitable for probing DNA structure and DNA-protein interactions based on the photochemical reactions of 5-IU. Here, we perform joint studies of time-resolved Fourier transform infrared (TR-FTIR) spectroscopy and ab initio calculations to examine the state-specific photochemical reaction mechanisms of the 5-IU. The fact that uracil (U) is observed in TR-FTIR spectra after 266 nm irradiation of 5-IU in acetonitrile and ascribed to the product of hydrogen abstraction by the uracil-5-yl radical (U·) provides experimental evidence for the C-I bond homolysis of 5-IU. The excited state potential energy curves are calculated with the complete active space second-order perturbation//complete active space self-consistent field method, from which a singlet predissociation mechanism is elucidated. It is shown that the initially populated 1(ππ*) state crosses with the repulsive 1(πσ*) or 1(nIσ*) state, through which 5-IU undergoes dissociation to the fragments of (U·) radical and iodine atom. In addition, the possibility of intersystem crossing (ISC) is evaluated based on the calculated vertical excitation energies. Although a probable ISC from 1(ππ*) state to 3(nOπ*) and then to the lowest triplet 3(ππ*) could occur in principal, there is little possibility for the excited state populations bifurcating to triplet manifold, given that the singlet state predissociation follows repulsive potential and should occur within dozens to hundreds of femtoseconds. Such low population of triplet states means that the contribution of triplet state to photoreactions of 5-IU should be quite minor. These results demonstrate clearly a physical picture of C-I bond homolysis of 5-IU and provide mechanistic illuminations to the interesting applications of 5-IU as photoprobes and in radiotherapy of cancer.


Assuntos
Uracila/análogos & derivados , Modelos Químicos , Espectroscopia de Infravermelho com Transformada de Fourier , Raios Ultravioleta , Uracila/química , Uracila/efeitos da radiação
20.
J Mater Chem B ; 3(5): 776-783, 2015 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-32262168

RESUMO

Amphiphilic trismethylpyridylporphyrin-C70 (PC70) dyad with improved photosensitization has been successfully prepared. The PC70 dyad forms a liposomal nanostructure through molecular self-assembling. An increased absorption coefficient in the visible region, good biocompatibility, and high photostability were observed on the self-assembling structure. Surprisingly, in comparison with previously reported photosensitizer porphyrins, PC70 exhibited an enhanced photodynamic therapy (PDT) effect under hypoxia conditions. Further investigations illustrated that PC70 went through an extremely long-life triplet state (211.3 µs) under hypoxia, which enabled the exiguous oxygen to approach and interact with the activated (3P-C70)* more efficiently and produce more singlet oxygen. This would overcome the problem of existing photosensitizers of low PDT efficiency in cancerous tissues under hypoxia. The excellent properties of PC70 dyad make it a promising phototherapeutic agent, especially for the treatment of early- and late-stage cancers under shallow and hypoxia tissues.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA