Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Aging Dis ; 15(3): 965-976, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38722791

RESUMO

Emerging from several decades of extensive research, key genetic elements and biochemical mechanisms implicated in neuroinflammation have been delineated, contributing substantially to our understanding of neurodegenerative diseases (NDDs). In this minireview, we discuss data predominantly from the past three years, highlighting the pivotal roles and mechanisms of the two principal cell types implicated in neuroinflammation. The review also underscores the extended process of peripheral inflammation that predates symptomatic onset, the critical influence of neuroinflammation, and their dynamic interplay in the pathogenesis of NDDs. Confronting these complex challenges, we introduce compelling evidence supporting the use of mesenchymal stem cell-based cell-free therapy. This therapeutic strategy includes the regulation of microglia and astrocytes, modulation of peripheral nerve cell inflammation, and targeted anti-inflammatory interventions specifically designed for NDDs, while also discussing engineering and safety considerations. This innovative therapeutic approach intricately modulates the immune system across the peripheral and nervous systems, with an emphasis on achieving superior penetration and targeted delivery. The insights offered by this review have significant implications for the better understanding and management of neuroinflammation.


Assuntos
Células-Tronco Mesenquimais , Doenças Neurodegenerativas , Doenças Neuroinflamatórias , Animais , Humanos , Astrócitos/metabolismo , Inflamação/terapia , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/imunologia , Células-Tronco Mesenquimais/metabolismo , Microglia/metabolismo , Microglia/imunologia , Doenças Neurodegenerativas/terapia , Doenças Neurodegenerativas/imunologia , Doenças Neuroinflamatórias/terapia , Doenças Neuroinflamatórias/imunologia
2.
Aging Dis ; 15(2): 640-697, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37450923

RESUMO

Various diseases, including cancers, age-associated disorders, and acute liver failure, have been linked to the oncogene, MYC. Animal testing and clinical trials have shown that sustained tumor volume reduction can be achieved when MYC is inactivated, and different combinations of therapeutic agents including MYC inhibitors are currently being developed. In this review, we first provide a summary of the multiple biological functions of the MYC oncoprotein in cancer treatment, highlighting that the equilibrium points of the MYC/MAX, MIZ1/MYC/MAX, and MAD (MNT)/MAX complexes have further potential in cancer treatment that could be used to restrain MYC oncogene expression and its functions in tumorigenesis. We also discuss the multifunctional capacity of MYC in various cellular cancer processes, including its influences on immune response, metabolism, cell cycle, apoptosis, autophagy, pyroptosis, metastasis, angiogenesis, multidrug resistance, and intestinal flora. Moreover, we summarize the MYC therapy patent landscape and emphasize the potential of MYC as a druggable target, using herbal medicine modulators. Finally, we describe pending challenges and future perspectives in biomedical research, involving the development of therapeutic approaches to modulate MYC or its targeted genes. Patients with cancers driven by MYC signaling may benefit from therapies targeting these pathways, which could delay cancerous growth and recover antitumor immune responses.


Assuntos
Produtos Biológicos , Neoplasias , Animais , Humanos , Genes myc , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Repressoras/genética , Produtos Biológicos/farmacologia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Transdução de Sinais , Neoplasias/tratamento farmacológico
3.
EMBO Mol Med ; 15(12): e17815, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-37994307

RESUMO

Efficient clearance of dying cells (efferocytosis) is an evolutionarily conserved process for tissue homeostasis. Genetic enhancement of efferocytosis exhibits therapeutic potential for inflammation resolution and tissue repair. However, pharmacological approaches to enhance efferocytosis remain sparse due to a lack of targets for modulation. Here, we report the identification of columbamine (COL) which enhances macrophage-mediated efferocytosis and attenuates intestinal inflammation in a murine colitis model. COL enhances efferocytosis by promoting LC3-associated phagocytosis (LAP), a non-canonical form of autophagy. Transcriptome analysis and pharmacological characterization revealed that COL is a biased agonist that occupies a part of the ligand binding pocket of formyl peptide receptor 2 (FPR2), a G-protein coupled receptor involved in inflammation regulation. Genetic ablation of the Fpr2 gene or treatment with an FPR2 antagonist abolishes COL-induced efferocytosis, anti-colitis activity and LAP. Taken together, our study identifies FPR2 as a potential target for modulating LC3-associated efferocytosis to alleviate intestinal inflammation and highlights the therapeutic value of COL, a natural and biased agonist of FPR2, in the treatment of inflammatory bowel disease.


Assuntos
Colite , Camundongos , Animais , Fagocitose , Transdução de Sinais , Inflamação/genética , Macrófagos/metabolismo , Colite/metabolismo
4.
Free Radic Biol Med ; 208: 299-308, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37625657

RESUMO

Progressive death of dopaminergic (DA) neurons is the main cause of Parkinson's disease (PD). The discovery of drug candidates to prevent DA neuronal death is required to address the pathological aspects and alter the process of PD. Azoramide is a new small molecule compound targeting ER stress, which was originally developed for the treatment of diabetes. In this study, pre-treatment with Azoramide was found to suppress mitochondria-targeting neurotoxin MPP+-induced DA neuronal death and locomotor defects in zebrafish larvae. Further study showed that pre-treatment with Azoramide significantly attenuated MPP+-induced SH-SY5Y cell death by reducing aberrant changes in nuclear morphology, mitochondrial membrane potential, intracellular reactive oxygen species, and apoptotic biomarkers. The mechanistic study revealed that Azoramide was able to up-regulate the expression of ER chaperone BiP and thereby prevented MPP+-induced BiP decrease. Furthermore, pre-treatment with Azoramide failed to suppress MPP+-induced cytotoxicity in the presence of the BiP inhibitor HA15. Taken together, these results suggested that Azoramide is a potential neuroprotectant with pro-survival effects against MPP+-induced cell death through up-regulating BiP expression.


Assuntos
1-Metil-4-fenilpiridínio , Neurônios Dopaminérgicos , Chaperona BiP do Retículo Endoplasmático , Neuroblastoma , Animais , Humanos , 1-Metil-4-fenilpiridínio/toxicidade , Apoptose , Morte Celular , Linhagem Celular Tumoral , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Neuroblastoma/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Peixe-Zebra/metabolismo , Chaperona BiP do Retículo Endoplasmático/efeitos dos fármacos , Chaperona BiP do Retículo Endoplasmático/metabolismo
5.
Cell Res ; 31(12): 1244-1262, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34702946

RESUMO

The infusion of coronavirus disease 2019 (COVID-19) patients with mesenchymal stem cells (MSCs) potentially improves clinical symptoms, but the underlying mechanism remains unclear. We conducted a randomized, single-blind, placebo-controlled (29 patients/group) phase II clinical trial to validate previous findings and explore the potential mechanisms. Patients treated with umbilical cord-derived MSCs exhibited a shorter hospital stay (P = 0.0198) and less time required for symptoms remission (P = 0.0194) than those who received placebo. Based on chest images, both severe and critical patients treated with MSCs showed improvement by day 7 (P = 0.0099) and day 21 (P = 0.0084). MSC-treated patients had fewer adverse events. MSC infusion reduced the levels of C-reactive protein, proinflammatory cytokines, and neutrophil extracellular traps (NETs) and promoted the maintenance of SARS-CoV-2-specific antibodies. To explore how MSCs modulate the immune system, we employed single-cell RNA sequencing analysis on peripheral blood. Our analysis identified a novel subpopulation of VNN2+ hematopoietic stem/progenitor-like (HSPC-like) cells expressing CSF3R and PTPRE that were mobilized following MSC infusion. Genes encoding chemotaxis factors - CX3CR1 and L-selectin - were upregulated in various immune cells. MSC treatment also regulated B cell subsets and increased the expression of costimulatory CD28 in T cells in vivo and in vitro. In addition, an in vivo mouse study confirmed that MSCs suppressed NET release and reduced venous thrombosis by upregulating kindlin-3 signaling. Together, our results underscore the role of MSCs in improving COVID-19 patient outcomes via maintenance of immune homeostasis.


Assuntos
COVID-19/terapia , Imunomodulação , Transplante de Células-Tronco Mesenquimais , Idoso , Animais , Anticorpos Antivirais/sangue , Subpopulações de Linfócitos B/citologia , Subpopulações de Linfócitos B/imunologia , Subpopulações de Linfócitos B/metabolismo , Proteína C-Reativa/análise , COVID-19/imunologia , COVID-19/virologia , Citocinas/genética , Citocinas/metabolismo , Proteínas do Citoesqueleto/metabolismo , Modelos Animais de Doenças , Armadilhas Extracelulares/metabolismo , Feminino , Humanos , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , SARS-CoV-2/isolamento & purificação , Linfócitos T/citologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Trombose Venosa/metabolismo , Trombose Venosa/patologia
6.
Phytomedicine ; 87: 153578, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34038839

RESUMO

BACKGROUND: Parkinson's disease (PD) is one of the most common neurodegenerative motor disorders, and is characterized by the presence of Lewy bodies containing misfolded α-synuclein (α-syn) and by selective degeneration of midbrain dopamine neurons. Studies have shown that upregulation of ubiquitin-proteasome system (UPS) activity promotes the clearance of aggregation-prone proteins such as α-syn and Tau, so as to alleviate the neuropathology of neurodegenerative diseases. PURPOSE: To identify and investigate lycorine as a UPS enhancer able to decrease α-syn in transgenic PD models. METHODS: Dot blot was used to screen α-syn-lowering compounds in an inducible α-syn overexpression cell model. Inducible wild-type (WT) and mutant α-syn-overexpressing PC12 cells, WT α-syn-overexpressing N2a cells and primary cultured neurons from A53T transgenic mice were used to evaluate the effects of lycorine on α-syn degradation in vitro. Heterozygous A53T transgenic mice were used to evaluate the effects of lycorine on α-syn degradation in vivo. mCherry-GFP-LC3 reporter was used to detect autophagy-dependent degradation. Ub-R-GFP and Ub-G76V-GFP reporters were used to detect UPS-dependent degradation. Proteasome activity was detected by fluorogenic substrate Suc-Leu-Leu-Val-Tyr-AMC (Suc-LLVY-AMC). RESULTS: Lycorine significantly promoted clearance of over-expressed WT and mutant α-syn in neuronal cell lines and primary cultured neurons. More importantly, 15 days' intraperitoneal administration of lycorine effectively promoted the degradation of α-syn in the brains of A53T transgenic mice. Mechanistically, lycorine accelerated α-syn degradation by activating cAMP-dependent protein kinase (PKA) to promote proteasome activity. CONCLUSION: Lycorine is a novel α-syn-lowering compound that works through PKA-mediated UPS activation. This ability to lower α-syn implies that lycorine has the potential to be developed as a pharmaceutical for the treatment of neurodegenerative diseases, such as PD, associated with UPS impairment and protein aggregations.


Assuntos
Alcaloides de Amaryllidaceae/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Doença de Parkinson/tratamento farmacológico , Fenantridinas/farmacologia , alfa-Sinucleína/metabolismo , Animais , Autofagia/efeitos dos fármacos , Autofagia/fisiologia , AMP Cíclico/metabolismo , Modelos Animais de Doenças , Humanos , Masculino , Camundongos Transgênicos , Fármacos Neuroprotetores/farmacologia , Células PC12 , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Ratos , Ubiquitina/metabolismo , Regulação para Cima/efeitos dos fármacos , alfa-Sinucleína/genética
7.
Brain Behav Immun ; 90: 393-402, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32916272

RESUMO

Our previous study revealed that fish oil (FO) pre-treatment could improve the lipopolysaccharides (LPS)-induced depressive-like behavior in mice but did not alter the expression of stress hormones associated with the hypothalamic-pituitary-adrenal (HPA) axis. The exact mechanisms underlying the protective effects of FO remain elusive. Here we applied the metabolomic technique to investigate the potential involvement of FO metabolites in ameliorating depressive-like behaviors in LPS-injected mice. It revealed that LPS-injection stimulated systemic inflammation, exhausted the nicotinamide adenine dinucleotide (NAD) level in the brain, decreased energy metabolism and impaired neuronal function, which collectively contributed to depressive-like behaviors in mice. FO treatment enhanced the production of neuroprotective metabolites including taurine, hypotaurine and tyramine, decreased the generation of neurotoxic agents such as ADPR, glutamate accumulation and oxidized glutathione, and prevented the NAD exhaustion in the brain, which might underlie the beneficial effects of FO against LPS-induced inflammation and depressive-like behaviors.


Assuntos
Óleos de Peixe , Lipopolissacarídeos , Animais , Depressão/induzido quimicamente , Depressão/tratamento farmacológico , Sistema Hipotálamo-Hipofisário , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Camundongos , Sistema Hipófise-Suprarrenal
8.
Commun Biol ; 3(1): 481, 2020 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-32879433

RESUMO

The role of n-3 polyunsaturated fatty acids (PUFAs) in alcoholic liver disease (ALD) has been controversial. N-3 PUFA oxidation in animal feeding stuffs was rarely concerned, likely contributing to inconsistent outcomes. Here, we report the impacts of oxidized fish oil (OFO) on ALD in C57BL/6 mice. Alcohol exposure increased plasma aminotransferase levels and hepatic inflammation. These deleterious effects were ameliorated by unoxidized FO but exacerbated by OFO. Sequencing analysis showed the accentuated intestinal dysbiosis and the increased proportion of Proteobacteria in OFO-fed mice. Intestinal sterilization by antibiotics completely abolished OFO-aggravated liver injury. Additionally, alcohol exposure leads to the greater increase in plasma endotoxin and decrease in intestinal tight junction protein expressions in OFO-fed mice. Stabilization of intestinal barrier by obeticholic acid markedly blunted OFO-aggravated liver injury in alcohol-fed mice. These results demonstrate that OFO exacerbates alcoholic liver injury through enhancing intestinal dysbiosis, barrier dysfunction, and hepatic inflammation mediated by gut-derived endotoxin.


Assuntos
Disbiose/complicações , Disbiose/patologia , Óleos de Peixe/efeitos adversos , Intestinos/patologia , Hepatopatias Alcoólicas/complicações , Hepatopatias Alcoólicas/patologia , Animais , Antibacterianos/farmacologia , Ácido Quenodesoxicólico/análogos & derivados , Ácido Quenodesoxicólico/farmacologia , Etanol , Microbioma Gastrointestinal , Inflamação/patologia , Fígado/efeitos dos fármacos , Fígado/lesões , Fígado/patologia , Camundongos , Oxirredução , RNA Ribossômico 16S/genética
9.
Chin Med ; 15: 29, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32256685

RESUMO

BACKGROUND: Alzheimer's disease (AD) is ranked as the most prevalent neurodegenerative disease. However, the exact molecular mechanisms underlying pathophysiological alterations in AD remain unclear, especially at the prodromal stage. The decreased proteolytic degradation of Aß, blood-brain barrier (BBB) disruption, and neuroinflammation are considered to play key roles in the course of AD. METHODS: Male APPswe/PS1dE9 C57BL/6 J double-transgenic (APP/PS1) mice in the age range from 1 month to 6 months and age-matched wild type mice were used in this study, intending to investigate the expression profiles of Aß-degrading enzymes for Aß degradation activities and zonula occludens-1 (zo-1) for BBB integrity at the prodromal stage. RESULTS: Our results showed that there were no significant genotype-related alterations in mRNA expression levels of 4 well-characterized Aß-degrading enzymes in APP/PS1 mice within the ages of 6 months. Interestingly, a significant decrease in zo-1 expression was observed in APP/PS1 mice starting from the age of 5 months, suggesting that BBB disrupt occurs at an early stage. Moreover, treatment of fish oil (FO) for 4 weeks remarkably increased zo-1 expression and significantly inhibited the glial activation and NF-κB activation in APP/PS1 mice. CONCLUSION: The results of our study suggest that FO supplement could be a potential therapeutic early intervention for AD through protecting the BBB integrity and suppressing glial and NF-κB activation.

10.
Aging Dis ; 11(2): 216-228, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32257537

RESUMO

A coronavirus (HCoV-19) has caused the novel coronavirus disease (COVID-19) outbreak in Wuhan, China. Preventing and reversing the cytokine storm may be the key to save the patients with severe COVID-19 pneumonia. Mesenchymal stem cells (MSCs) have been shown to possess a comprehensive powerful immunomodulatory function. This study aims to investigate whether MSC transplantation improves the outcome of 7 enrolled patients with COVID-19 pneumonia in Beijing YouAn Hospital, China, from Jan 23, 2020 to Feb 16, 2020. The clinical outcomes, as well as changes of inflammatory and immune function levels and adverse effects of 7 enrolled patients were assessed for 14 days after MSC injection. MSCs could cure or significantly improve the functional outcomes of seven patients without observed adverse effects. The pulmonary function and symptoms of these seven patients were significantly improved in 2 days after MSC transplantation. Among them, two common and one severe patient were recovered and discharged in 10 days after treatment. After treatment, the peripheral lymphocytes were increased, the C-reactive protein decreased, and the overactivated cytokine-secreting immune cells CXCR3+CD4+ T cells, CXCR3+CD8+ T cells, and CXCR3+ NK cells disappeared in 3-6 days. In addition, a group of CD14+CD11c+CD11bmid regulatory DC cell population dramatically increased. Meanwhile, the level of TNF-α was significantly decreased, while IL-10 increased in MSC treatment group compared to the placebo control group. Furthermore, the gene expression profile showed MSCs were ACE2- and TMPRSS2- which indicated MSCs are free from COVID-19 infection. Thus, the intravenous transplantation of MSCs was safe and effective for treatment in patients with COVID-19 pneumonia, especially for the patients in critically severe condition.

11.
Cell Death Dis ; 11(2): 128, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32071296

RESUMO

Autophagy, a conserved cellular degradation and recycling process, can be enhanced by nutrient depletion, oxidative stress or other harmful conditions to maintain cell survival. 6-Hydroxydopamine/ascorbic acid (6-OHDA/AA) is commonly used to induce experimental Parkinson's disease (PD) lesions by causing oxidative damage to dopaminergic neurons. Activation of autophagy has been observed in the 6-OHDA-induced PD models. However, the mechanism and exact role of autophagy activation in 6-OHDA PD model remain inconclusive. In this study, we report that autophagy was triggered via mucolipin 1/calcium/calcineurin/TFEB (transcription factor EB) pathway upon oxidative stress induced by 6-OHDA/AA. Interestingly, overexpression of TFEB alleviated 6-OHDA/AA toxicity. Moreover, autophagy enhancers, Torin1 (an mTOR-dependent TFEB/autophagy enhancer) and curcumin analog C1 (a TFEB-dependent and mTOR-independent autophagy enhancer), significantly rescued 6-OHDA/AA-induced cell death in SH-SY5Y cells, iPSC-derived DA neurons and mice nigral DA neurons. The behavioral abnormality of 6-OHDA/AA-treated mice can also be rescued by Torin 1 or C1 administration. The protective effects of Torin 1 and C1 can be blocked by autophagy inhibitors like chloroquine (CQ) or by knocking down autophagy-related genes TFEB and ATG5. Taken together, this study supports that TFEB-mediated autophagy is a survival mechanism during oxidative stress and pharmacological enhancement of this process is a neuroprotective strategy against oxidative stress-associated PD lesions.


Assuntos
Antiparkinsonianos/farmacologia , Autofagia/efeitos dos fármacos , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Encéfalo/efeitos dos fármacos , Curcumina/farmacologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Naftiridinas/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Transtornos Parkinsonianos/tratamento farmacológico , Animais , Ácido Ascórbico , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Comportamento Animal/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Linhagem Celular Tumoral , Curcumina/análogos & derivados , Modelos Animais de Doenças , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Feminino , Humanos , Camundongos Endogâmicos C57BL , Mitofagia/efeitos dos fármacos , Oxidopamina , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/metabolismo , Transtornos Parkinsonianos/patologia , Transdução de Sinais , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo
12.
Chin Med ; 15: 8, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31993073

RESUMO

BACKGROUND: Atherosclerosis, the underlying cause of the majority of cardiovascular diseases, is a lipid-driven, inflammatory disease of the large arteries. Atherosclerotic cardiovascular disease (ASCVD) threatens human lives due to high morbidity and mortality. Many studies have demonstrated that atherosclerosis is accelerated via activation of the NLRP3 inflammasome. The NLRP3 inflammasome plays a critical role in the development of vascular inflammation and atherosclerosis. In atherosclerotic plaques, excessive generation of reactive oxygen species (ROS) activates the NLRP3 inflammasome. 13-Methylberberine (13-MB) is a newly synthesized compound used in traditional Chinese medicine that has outstanding antibacterial, antitumor, and antiobesity activities, especially anti-inflammatory activity. However, the role of 13-MB in atherosclerosis needs to be explored. METHODS: CCK-8 assays and flow cytometry were conducted to determine the cell viability and apoptotic profiles of human umbilical vein endothelial cells (HUVECs) treated with 13-MB. Carboxy-DCFH-DA and JC-10 assays were used to measure ROS and determine mitochondrial membrane potential. Western blot analysis was performed to investigate proteins that are associated with the NLRP3 inflammasome and autophagy. ELISA was used to detect and quantify inflammatory cytokines related to the NLRP3 inflammasome. Transfection and confocal microscopy were conducted to observe autophagy. RESULTS: Pretreatment with 13-MB markedly reduced cytotoxicity and apoptosis, as well as intracellular ROS production, in H2O2-induced HUVECs. Moreover, 13-MB showed a protective effect in maintaining mitochondrial membrane potential. 13-MB also suppressed NLRP3 inflammasome activation and promoted autophagy induction in HUVECs. CONCLUSION: 13-MB exerts cytoprotective effects in an H2O2-induced cell injury model by inhibiting NLRP3 inflammasome activation via autophagy induction in HUVECs. These anti-inflammatory and autophagy induction activities may provide valuable evidence for further investigating the potential role of 13-MB in atherosclerosis.

13.
Brain Behav Immun ; 85: 142-151, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-30851380

RESUMO

OBJECTIVE: Circadian dysfunction is a core manifestation and a risk factor for psychiatric disorders. Ramelteon (RMT), a melatonin receptor agonist, has been shown to induce sleep phase shifts and has been used to normalize sleep onset time. RMT has been used in sleep disorders, depression and anxiety. In this study, we aimed to investigate the effects of RMT in regulating gene expression profiles of the circadian clock and peripheral markers of inflammation and neuroplasticity. METHODS: Sixteen patients with a diagnosis of primary insomnia comorbid with depression and anxiety and ten healthy controls were recruited in an 8-week open-label trial. The patients with primary insomnia received RMT 8 mg/day. The morning expression profiles of 15 core clock genes from peripheral blood mononuclear cells (PBMCs), urine and plasma levels of melatonin and its metabolite levels, and plasma inflammatory markers and neurotrophin levels were evaluated at baseline, 4th and 8th week of RMT treatment. RESULTS: RMT treatment was associated with significant clinical improvement in depression scores at 8th week (Hamilton depression rating scale scores (Mean ±â€¯SEM) from 21.5 ±â€¯2.44 to 14.31 ±â€¯2.25, p ≤ 0.05). The overall poor sleep quality (Pittsburgh sleep quality index) of the patient group significantly improved (p ≤ 0.05) following RMT treatment. The mRNA level analysis showed a significant association between RMT treatment and alterations of the nine core circadian genes (CLOCK, PER1, PER2, CRY1, CRY2, NR1D1, NR1D2, DEC1 and TIMELESS) in the patient group when compared with the control group (p ≤ 0.05). Compared with the controls, the patient group had a decrease in neurotrophins (brain-derived neurotrophic factor, glial cell line-derived neurotrophic factor and beta-nerve growth factor; p ≤ 0.05) but an increase in pro-inflammatory cytokine levels (interleukin-6, interleukin-1b, tumour necrosis factor-alpha and interferon gamma; p ≤ 0.05); RMT treatment normalized the levels of neurotrophins and cytokine levels. CONCLUSION: RMT treatment is able to restore phase-shifted melatonin markers, normalized the altered expression of the circadian genes, the levels of inflammatory cytokines and neurotrophins in patients with insomnia comorbid anxiety and depression.


Assuntos
Relógios Circadianos , Ansiedade , Relógios Circadianos/genética , Ritmo Circadiano , Depressão/tratamento farmacológico , Depressão/genética , Humanos , Leucócitos Mononucleares , Plasticidade Neuronal
14.
Brain Behav Immun ; 85: 35-45, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31132459

RESUMO

Amyloid-ß (Aß) plaques is one of the typical pathological hallmark of Alzheimer disease (AD). Accumulating evidence suggests that the imbalance between Aß production and clearance leads to extracellular Aß accumulation in the brain. It is reported that the blood-brain barrier (BBB) transport plays a predominant role in Aß clearance from brain to blood. In the present study, we investigated dynamic alterations of BBB transport function in the early disease stage of AD using APPswe/PS1dE9 C57BL/6J (APP/PS1) transgenic mice. Our results showed that the expression of lipoprotein receptor-related protein 1 (LRP-1), a main efflux transporter of BBB, started to decrease at the age of 4 months old. Interestingly, supplementing with fish oil which is rich in omega-3 polyunsaturated fatty acids (PUFAs) significantly enhanced the expression level of LRP-1 and promoted Aß clearance from the bran to circulation, as revealed by reduced soluble/insoluble Aß levels and senile plaques in the brain parenchyma and a corresponding increase of Aß levels in plasma. Besides, fish oil supplement significantly inhibited the NF-κB activation, reduced the expression of interleukin-1ß and tumor necrosis factor-α, and suppressed the glial activation in APP/PS1 mice. The results of the study provide evidence that BBB transport function could be impaired at a very early disease stage, which might contribute to Aß pathological accumulation in AD, and omega-3 PUFAs intervention could be an effective strategy for the prevention of the progression of AD through promoting Aß clearance from brain-to-blood.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
15.
Cells ; 8(10)2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31618870

RESUMO

Nitric oxide (NO) is an important mediator of inflammation response and the production of NO has been linked to a variety of diseases, including tumors, inflammation and central nervous system diseases. In macrophages, a high level of NO is generated by iNOS during inflammatory responses triggered by cytokines or pathogens. Autophagy, a cellular bulk degradation process via lysosome, has been implicated in many disease conditions including inflammation. In this study, we have reported the previously unknown role of autophagy in regulating iNOS levels in macrophages, both under basal and Lipopolysaccharides (LPS)-induced conditions. Our data showed that iNOS levels accumulated upon autophagy inhibition and decreased upon autophagy induction. iNOS interacted and co-localized with autophagy receptor p62/SQSTM1, especially under LPS-stimulated condition in macrophages. Moreover, the immunostaining data revealed that iNOS also co-localizes with the autophagosome marker LC3 and lysosome marker LAMP1, especially under lysosomal inhibition conditions, indicating iNOS is an autophagy substrate. Finally, we showed that autophagy negatively regulated the generation of NO in macrophages, which is consistent with the changes of iNOS levels. Collectively, our study revealed a previously unknown mechanism by which autophagy regulates iNOS levels to modulate NO production during inflammation.


Assuntos
Macrófagos/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico/metabolismo , Proteína Sequestossoma-1/metabolismo , Animais , Autofagossomos/metabolismo , Autofagia/fisiologia , Linhagem Celular , Citocinas/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Lipopolissacarídeos/farmacologia , Proteína 1 de Membrana Associada ao Lisossomo/metabolismo , Lisossomos/metabolismo , Macrófagos/enzimologia , Macrófagos/patologia , Camundongos , Proteínas Associadas aos Microtúbulos/metabolismo , Células RAW 264.7 , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo
16.
Anal Chim Acta ; 1082: 86-97, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31472716

RESUMO

Phospholipid fatty acids play the crucial role in biophysical properties and the function of cellular membranes. In the present study, an accurate and sensitive method was developed to quantify phospholipid fatty acids in biological samples by using chemical isotope labeling coupled with atmospheric pressure gas chromatography quadrupole-time-of-flight mass spectrometry (APGC/Q-TOF MS). APGC, a soft ionization source, was operated under proton-transfer condition by introducing methanol into the ionization source as a modifier, which provided high quantifiable molecular ion peaks to substantially enhance the sensitivity. Fatty acid standards were methylated with methanol-d4 to yield FAMEs-d3 that were used as one-to-one internal standards to ensure accurate quantification. Thirty fatty acids in phospholipids were accurately quantified in wide linear range with limit of quantification ranging from 84.6 to 113.2 pg/mL. The newly developed method was successfully applied to quantify phospholipid fatty acids in brain and liver tissues from both fat-1 and WT mice. This method might be expanded to quantify free fatty acids or other conjugated fatty acids in biological samples or other matrices.


Assuntos
Ácidos Graxos/análise , Fosfolipídeos/análise , Animais , Pressão Atmosférica , Química Encefálica , Caderinas/genética , Cromatografia Gasosa-Espectrometria de Massas/métodos , Marcação por Isótopo , Fígado/química , Camundongos Transgênicos , Estrutura Molecular , Fosfolipídeos/química
17.
Phytomedicine ; 61: 152842, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31048127

RESUMO

BACKGROUND: Parkinson's disease (PD) is an age-dependent progressive movement disorder characterized by a profound and selective loss of nigrostriatal dopaminergic neurons. Accumulation of -synuclein (-syn) positive protein aggregates in the substantia nigra is a pathological hallmark of PD, indicating that protein turnover defect is implicated in PD pathogenesis. PURPOSE: This study aims to identify neuroprotective compounds which can alleviate the accumulation of -syn in neuronal cells and dissect the underlying mechanisms. METHODS: High throughput screening was performed by dot blot assay. The degradation of different forms of -syn by candidate compounds were assessed by western blot. The autophagy lysosome pathway and ubiquitin-proteasome system were examined to dissect the degradation pathway. The UPS activity was assessed by cellular UPS substrates degradation assay and biochemical proteasome activity assay. Q-PCR was performed to test the mRNA level of different proteasome subunits. Furthermore, Neuroprotective effect of candidate compound was tested by LDH assay and PI staining. RESULTS: Through the high throughput screening, harmine was identified as a potent -syn lowering compound. The time-dependent and dose-dependent effects of harmine on the degradation of different forms of -syn were further confirmed. Harmine could dramatically promote the degradation of UPS substrates GFP-CL1, Ub-R-GFP and Ub-G76V-GFP, and activate cellular proteasome activity. Mechanistically, harmine dramatically enhanced PKA phosphorylation to enhance proteasome subunit PSMD1 expression. PKA inhibitor blocked the effects of harmine in activating UPS, up regulating PSMD1 and promoting -syn degradation, indicating that harmine enhances UPS function via PKA activation. Moreover, harmine efficiently rescued cell death induced by over-expression of -syn, via UPS-dependent manner. CONCLUSION: Harmine, as a new proteasome enhancer, may have potential to be developed into therapeutic agent against neurodegenerative diseases associated with UPS dysfunction and aberrant proteins accumulation.


Assuntos
Harmina/farmacologia , Neurônios/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo , alfa-Sinucleína/metabolismo , Animais , Autofagia/efeitos dos fármacos , Células Cultivadas , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Feminino , Camundongos Transgênicos , Neurônios/metabolismo , Células PC12 , Fosforilação/efeitos dos fármacos , Ratos , alfa-Sinucleína/genética
18.
Addict Biol ; 24(4): 577-589, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-29569345

RESUMO

Alcohol addiction is a chronic neuropsychiatric disorder that represents one of the most serious global public health problems. Yet, currently there still lacks an effective pharmacotherapy. Omega-3 polyunsaturated fatty acids (N-3 PUFAs) have exhibited beneficial effects in a variety of neurological disorders, particularly in reversing behavioral deficits and neurotoxicity induced by prenatal alcohol exposure and binge drinking. In the present study, we investigated if fish oil, which is rich in N-3 PUFAs, had beneficial effects on preventing relapse and alleviating withdrawal symptoms after chronic alcohol exposure. Our results demonstrated that fish oil significantly reduced the chronic alcohol exposure-induced aberrant dendritic morphologic changes of the medium-sized spiny neurons in the core and the shell of nucleus accumbens. This inhibited the expression of AMPAR2-lacking AMPARs and their accumulation on the post synaptic membranes of medium-sized spiny neurons and eventually alleviated withdrawal symptoms and alcohol dependence. Our study therefore suggests that N-3 PUFAs are promising for treating withdrawal symptoms and alcohol dependence.


Assuntos
Alcoolismo/patologia , Depressores do Sistema Nervoso Central/farmacologia , Dendritos/efeitos dos fármacos , Etanol/farmacologia , Óleos de Peixe/farmacologia , Núcleo Accumbens/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Convulsões por Abstinência de Álcool , Animais , Dendritos/patologia , Locomoção/efeitos dos fármacos , Camundongos , Núcleo Accumbens/citologia , Núcleo Accumbens/patologia , Receptores de AMPA/efeitos dos fármacos , Receptores de AMPA/metabolismo , Recidiva , Sinapses/patologia
19.
Oncotarget ; 9(62): 31958-31970, 2018 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-30174789

RESUMO

Angiogenesis is a hallmark for cancer development because it is essential for cancer growth and provides the route for cancer cell migration (metastasis). Understanding the mechanism of angiogenesis and developing drugs that target the process has therefore been a major focus for research on cancer therapy. In this study, we screened 114 FDA-approved anti-cancer drugs for their effects on angiogenesis in the zebrafish. Among those with positive effects, we chose to focus on Ponatinib (AP24534; Iclusig®) for further investigation. Ponatinib is an inhibitor of the tyrosine kinase BCR-ABL in chronic myeloid leukemia (CML), and its clinical trial has been approved by FDA for the treatment of the disease. In recent clinical trials, however, some side effects have been reported for Ponatinib, mostly on blood vessel disorders, raising the possibility that this drug may influence angiogenesis. In this study, we demonstrated that Ponatinib was able to suppress the formation of intersegmental vessels (ISV) and subintestinal vessels (SIV) in the zebrafish larvae. The anti-angiogenic effect of Ponatinib was further validated by other bioassays in human umbilical vein endothelial cells (HUVECs), including cell proliferation and migration, tube formation, and wound healing. Further experiments showed that Ponatinib inhibited VEGF-induced VEGFR2 phosphorylation and its downstream signaling pathways including Akt/eNOS/NO pathway and MAPK pathways (ERK and p38MAPK). Taken together, these results suggest that inhibition of VEGF signaling at its receptor level and downstream pathways may likely be responsible for the antiangiogenic activity of Ponatinib.

20.
Food Chem Toxicol ; 119: 430-437, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29269059

RESUMO

The safety issue of using carbamate pesticides in medicinal plants (MPs) has been a global concern and hence attracted attention of many researchers to develop analytical tools for trace pesticides detection. Derived from the fluorescence-based techniques, a rapid, convenient and efficient method for the detection of three carbamate pesticides, including carbofuran, aldicarb and methomyl has been developed by using core-shell QDs. By optimizing experimental parameters, the system demonstrated high detection sensitivities for the investigated carbamates, with the lowest detectable concentrations less than 0.05 µM. The molecular docking study indicated that the selected carbamate pesticides bound to the catalytic active site of acetylcholinesterase via π-π or H-π interactions, which also revealed the potential mechanism of the differences in inhibition strength among the three pesticides on AChE. Moreover, in order to investigate the applicability and reliability of the proposed method for the pesticide analysis in real sample with complex matrix, the matrix effects of eight common MPs have been systematically explored. These findings suggested that this technique was a simple, sensitive and reliable method for rapid determination of carbamate pesticides in real samples, especially those with complex matrices like MPs, vegetables, fruits, and other agricultural crops.


Assuntos
Carbamatos/análise , Praguicidas/análise , Plantas Medicinais/química , Espectrometria de Fluorescência/métodos , Acetilcolinesterase/metabolismo , Carbamatos/metabolismo , Limite de Detecção , Simulação de Acoplamento Molecular , Praguicidas/metabolismo , Pontos Quânticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA