Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Genes (Basel) ; 15(1)2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38254964

RESUMO

Improving seed oil quality in peanut (Arachis hypogaea) has long been an aim of breeding programs worldwide. The genetic resources to achieve this goal are limited. We used an advanced recombinant inbred line (RIL) population derived from JH5 × KX01-6 to explore quantitative trait loci (QTL) affecting peanut oil quality and their additive effects, epistatic effects, and QTL × environment interactions. Gas chromatography (GC) analysis suggested seven fatty acids components were obviously detected in both parents and analyzed in a follow-up QTL analysis. The major components, palmitic acid (C16:0), oleic acid (C18:1), and linoleic acid (C18:2), exhibited considerable phenotypic variation and fit the two major gene and minor gene mixed-inheritance model. Seventeen QTL explained 2.57-38.72% of the phenotypic variation in these major components, with LOD values of 4.12-37.56 in six environments, and thirty-five QTL explained 0.94-32.21% of the phenotypic variation, with LOD values of 5.99-150.38 in multiple environments. Sixteen of these QTL were detected in both individual and multiple environments. Among these, qFA_08_1 was a novel QTL with stable, valuable and major effect. Two other major-effect QTL, qFA_09_2 and qFA_19_3, share the same physical position as FAD2A and FAD2B, respectively. Eleven stable epistatic QTL involving nine loci explained 1.30-34.97% of the phenotypic variation, with epistatic effects ranging from 0.09 to 6.13. These QTL could be valuable for breeding varieties with improved oil quality.


Assuntos
Arachis , Locos de Características Quantitativas , Arachis/genética , Melhoramento Vegetal , Ácidos Graxos/genética , Óleos de Plantas
2.
Oncol Lett ; 26(6): 518, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37920441

RESUMO

Lung adenocarcinoma (LUAD) is a clinically challenging disease due to its poor prognosis and limited therapeutic methods. The aim of the present study was to identify prognosis-related genes and therapeutic targets for LUAD. Raw data from the GSE32863, GSE41271 and GSE42127 datasets were downloaded from the Gene Expression Omnibus database. Following normalization, the data were merged into a matrix, which was first used to identify differentially expressed genes (DEGs). Weighted gene co-expression network analysis (WGCNA) and survival analysis were performed to screen potential prognosis-related genes. Gene overlaps among DEGs, survival-related genes and WGCNA genes were finally constructed to obtain candidate genes. An analysis with the STRING database was performed to construct a protein-protein interaction network and hub genes were selected using Cytoscape. The candidate genes were finally identified by univariate and multivariate Cox regression analysis. Furthermore, in vivo and in vitro experiments, including immunohistochemistry, immunofluorescence, Cell Counting Kit-8, colony-formation and migration assays, were performed to validate the potential mechanism of these genes in LUAD. Two genes, namely forkhead box M1 (FOXM1) and centromere protein F (CENPF), were identified as unfavorable indicators of prognosis in patients with LUAD. High expression of FOXM1 and CENPF were associated with poor survival. Furthermore, LUAD cells with FOXM1 and CENPF knockdown showed a significant reduction in proliferation and migration (P<0.05). FOXM1 and CENPF may have an essential role in the prognosis of patients with LUAD by influencing cell proliferation and migration, and they provide potential molecular targets for LUAD therapy.

3.
Front Bioeng Biotechnol ; 11: 1259696, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37662437

RESUMO

The clinical challenge of bone defects in the craniomaxillofacial region, which can lead to significant physiological dysfunction and psychological distress, persists due to the complex and unique anatomy of craniomaxillofacial bones. These critical-sized defects require the use of bone grafts or substitutes for effective reconstruction. However, current biomaterials and methods have specific limitations in meeting the clinical demands for structural reinforcement, mechanical support, exceptional biological performance, and aesthetically pleasing reconstruction of the facial structure. These drawbacks have led to a growing need for novel materials and technologies. The growing development of 3D printing can offer significant advantages to address these issues, as demonstrated by the fabrication of patient-specific bioactive constructs with controlled structural design for complex bone defects in medical applications using this technology. Poly (ether ether ketone) (PEEK), among a number of materials used, is gaining recognition as a feasible substitute for a customized structure that closely resembles natural bone. It has proven to be an excellent, conformable, and 3D-printable material with the potential to replace traditional autografts and titanium implants. However, its biological inertness poses certain limitations. Therefore, this review summarizes the distinctive features of craniomaxillofacial bones and current methods for bone reconstruction, and then focuses on the increasingly applied 3D printed PEEK constructs in this field and an update on the advanced modifications for improved mechanical properties, biological performance, and antibacterial capacity. Exploring the potential of 3D printed PEEK is expected to lead to more cost-effective, biocompatible, and personalized treatment of craniomaxillofacial bone defects in clinical applications.

4.
Mar Pollut Bull ; 196: 115596, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37776742

RESUMO

Groundwater resources constitute a primary water source in the coastal region of Jiaodong Peninsula (CRJP), serving as an essential foundation for socio-economic development and municipal water supply. This study sought to evaluate the hydrogeochemical properties of the CRJP's groundwater using 73 samples collected in 2017, comprehensively analyzing the chemical composition and environmental factors using mathematical statistics and hydrochemical techniques. The results demonstrate that groundwater in the CRJP possesses TDS values ranging from 262 to 28,160 mg/L, with a pH ranging between 6.4 and 8.5, characterizing a weakly alkaline water system. The cation order in groundwater is Na+ > Ca2+ > Mg2+ > K+, while the anionic sequence comprises Cl- > HCO3- > SO42- > NO3-. According to the Piper diagram, groundwater samples predominantly clustered into SO4·Cl-Ca·Mg and SO4·Cl-Na types. Additionally, significant spatial variations exist in the primary chemical components of groundwater. Hydrogeochemical characteristics within the region are influenced both by natural and human activities; natural elements include weathering of silicate rocks, gypsum and carbonate minerals dissolution, while human practices comprise industrial and mining activities, agricultural practices, and domestic waste discharge. The results from a health risk assessment show that non-carcinogenic risks posed by nitrate intake via drinking water are considerably high for infants in comparison to adults, teenagers, and children. Furthermore, certain regions within the CRJP show notable seawater intrusion effects on groundwater studied.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Adulto , Criança , Humanos , Adolescente , Qualidade da Água , Monitoramento Ambiental , Poluentes Químicos da Água/análise , Água Subterrânea/química , China , Água
5.
Signal Transduct Target Ther ; 8(1): 312, 2023 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-37607946

RESUMO

Immune checkpoint inhibitors (ICIs) have induced durable clinical responses in a subset of patients with colorectal cancer (CRC). However, the dis-satisfactory response rate and the lack of appropriate biomarkers for selecting suitable patients to be treated with ICIs pose a major challenge to current immunotherapies. Inflammation-related molecule A20 is closely related to cancer immune response, but the effect of A20 on "eat-me" signal and immunotherapy efficacy remains elusive. We found that A20 downregulation prominently improved the antitumor immune response and the efficacy of PD-1 inhibitor in CRC in vitro and in vivo. Higher A20 expression was associated with less infiltration of immune cells including CD3 (+), CD8 (+) T cells and macrophages in CRC tissues and also poorer prognosis. Gain- and loss-A20 functional studies proved that A20 could decrease the "eat-me" signal calreticulin (CRT) protein on cell membrane translocation via upregulating stanniocalcin 1 (STC1), binding to CRT and detaining in mitochondria. Mechanistically, A20 inhibited GSK3ß phosphorylating STC1 at Thr86 to slow down the degradation of STC1 protein. Our findings reveal a new crosstalk between inflammatory molecule A20 and "eat-me" signal in CRC, which may represent a novel predictive biomarker for selecting CRC patients most likely to benefit from ICI therapy.


Assuntos
Neoplasias Colorretais , Evasão da Resposta Imune , Humanos , Linfócitos T CD8-Positivos , Neoplasias Colorretais/genética , Glicoproteínas , Inibidores de Checkpoint Imunológico
6.
Am J Physiol Gastrointest Liver Physiol ; 325(3): G213-G229, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37366545

RESUMO

The endocannabinoid system (ECS) is dysregulated in various liver diseases. Previously, we had shown that the major endocannabinoid 2-arachidonoyl glycerol (2-AG) promoted tumorigenesis of intrahepatic cholangiocarcinoma (ICC). However, biosynthesis regulation and clinical significance of 2-AG remain elusive. In the present study, we quantified 2-AG by gas chromatography/mass spectrometry (GC/MS) and showed that 2-AG was enriched in patients with ICC samples as well as in thioacetamide-induced orthotopic rat ICC model. Moreover, we found that diacylglycerol lipase ß (DAGLß) was the principal synthesizing enzyme of 2-AG that significantly upregulated in ICC. DAGLß promoted tumorigenesis and metastasis of ICC in vitro and in vivo and positively correlated with clinical stage and poor survival in patients with ICC. Functional studies showed that activator protein-1 (AP-1; heterodimers of c-Jun and FRA1) directly bound to the promoter and regulated transcription of DAGLß, which can be enhanced by lipopolysaccharide (LPS). miR-4516 was identified as the tumor-suppressing miRNA of ICC that can be significantly suppressed by LPS, 2-AG, or ectopic DAGLß overexpression. FRA1 and STAT3 were targets of miR-4516 and overexpression of miRNA-4516 significantly suppressed expression of FRA1, SATA3, and DAGLß. Expression of miRNA-4516 was negatively correlated with FRA1, SATA3, and DAGLß in patients with ICC samples. Our findings identify DAGLß as the principal synthesizing enzyme of 2-AG in ICC. DAGLß promotes oncogenesis and metastasis of ICC and is transcriptionally regulated by a novel AP-1/DAGLß/miR4516 feedforward circuitry.NEW & NOTEWORTHY Dysregulated endocannabinoid system (ECS) had been confirmed in various liver diseases. However, regulation and function of 2-arachidonoyl glycerol (2-AG) and diacylglycerol lipase ß (DAGLß) in intrahepatic cholangiocarcinoma (ICC) remain to be elucidated. Here, we demonstrated that 2-AG was enriched in ICC, and DAGLß was the principal synthesizing enzyme of 2-AG in ICC. DAGLß promotes tumorigenesis and metastasis in ICC via a novel activator protein-1 (AP-1)/DAGLß/miR4516 feedforward circuitry.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , MicroRNAs , Ratos , Animais , Fator de Transcrição AP-1/genética , Endocanabinoides , Lipase Lipoproteica , Glicerol , Lipopolissacarídeos , Colangiocarcinoma/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Ductos Biliares Intra-Hepáticos/metabolismo , Ductos Biliares Intra-Hepáticos/patologia , Neoplasias dos Ductos Biliares/metabolismo , Carcinogênese , Linhagem Celular Tumoral
7.
Theor Appl Genet ; 136(5): 97, 2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37027047

RESUMO

KEY MESSAGE: AhyHOF1, likely encoding a WRI1 transcription factor, plays critical roles in peanut oil synthesis. Although increasing the oil content of peanut to meet growing demand has long been a primary aim of breeding programs worldwide, the mining of genetic resources to achieve this objective has obviously lagged behind that of other oil crops. In the present study, we developed an advanced recombinant inbred line population containing 192 F9:11 families derived from parents JH5 and KX01-6. We then constructed a high-resolution genetic map covering 3,706.382 cM, with an average length of 185.32 cM per linkage group, using 2840 polymorphic SNPs. Two stable QTLs, qCOA08_1 and qCOA08_2 having the highest contributions to genetic variation (16.1% and 20.7%, respectively), were simultaneously detected in multiple environments and closely mapped within physical intervals of approximately 2.9 Mb and 1.7 Mb, respectively, on chromosome A08. In addition, combined analysis of whole-genome and transcriptome resequencing data uncovered a strong candidate gene encoding a WRI1 transcription factor and differentially expressed between the two parents. This gene, designated as High Oil Favorable gene 1 in Arachis hypogaea (AhyHOF1), was hypothesized to play roles in oil accumulation. Examination of near-inbred lines of #AhyHOF1/#Ahyhof1 provided further evidence that AhyHOF1 increases oil content, mainly by affecting the contents of several fatty acids. Taken together, our results provide valuable information for cloning the favorable allele for oil content in peanut. In addition, the closely linked polymorphic SNP markers within qCOA08_1 and qCOA08_2 loci may be useful for accelerating marker-assisted selection breeding of peanut.


Assuntos
Arachis , Melhoramento Vegetal , Humanos , Arachis/genética , Mapeamento Cromossômico/métodos , Locos de Características Quantitativas , Fatores de Transcrição/genética
8.
Mol Ther ; 31(2): 503-516, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36384875

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a malignant tumor with poor prognosis. Gemcitabine-based chemotherapy has become one of the main modalities of its management. However, gemcitabine resistance frequently occurs, leading to failure of PDAC therapy. Platelet-derived growth factors (PDGFs) and their receptors play important roles in cancer progression and chemoresistance. We aimed to investigate the biological function and therapeutic significance of platelet-derived growth factor C (PDGFC) in drug-resistant PDAC. Our study showed that PDGFC was abnormally highly expressed in gemcitabine-resistant PDAC. Silencing PDGFC expression can enhance the therapeutic effect of gemcitabine on PDAC. Mechanistically, the transcription of PDGFC is mediated by H3K27 acetylation, and PDGFC promotes gemcitabine resistance by activating the PDGFR-PI3K-AKT signaling pathway. The PDGFR inhibitor imatinib inhibits the PDGFR pathway. Imatinib and gemcitabine have a synergistic effect on the treatment of PDAC, and imatinib can significantly enhance the anti-tumor effect of gemcitabine in a drug-resistant PDAC patient-derived xenograft model. In conclusion, PDGFC is a potential predictor of gemcitabine-resistant PDAC. Imatinib inhibits PDGFR activation to promote gemcitabine sensitivity in PDAC. Combined modality regimen of imatinib and gemcitabine is likely to translate into clinical trial for the treatment of PDGFC-associated gemcitabine-resistant patients.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Gencitabina , Mesilato de Imatinib/farmacologia , Mesilato de Imatinib/uso terapêutico , Desoxicitidina/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Linhagem Celular Tumoral , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Transdução de Sinais , Resistencia a Medicamentos Antineoplásicos/genética
9.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 45(6): 1011-1014, 2023 Dec 30.
Artigo em Chinês | MEDLINE | ID: mdl-38173115

RESUMO

One case with ascites and lower limb edema as the initial manifestations was reported.The echocardiography revealed inferior vena cava and right atrial occupation,which combined with increased alpha fetoprotein and imaging examination,suggested liver malignant tumor combined with tumor thrombus of inferior vena cava and right atrium.After targeted therapy combined with immunotherapy,the tumor shrank and alpha fetoprotein decreased significantly,suggesting that the treatment was effective.The median survival time of the patient was 3 months.This patient had a clear history of cirrhosis due to hepatitis B and was clinically diagnosed with advanced liver cancer,which suggested the importance of early liver cancer screening.


Assuntos
Neoplasias Hepáticas , Veia Cava Inferior , Humanos , Veia Cava Inferior/diagnóstico por imagem , Veia Cava Inferior/patologia , alfa-Fetoproteínas , Ecocardiografia , Átrios do Coração/diagnóstico por imagem , Átrios do Coração/patologia , Neoplasias Hepáticas/patologia
10.
Biomaterials ; 289: 121757, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36058028

RESUMO

The alternations in the hypoxic and immune microenvironment are closely related to the therapeutic effect and prognosis of oral squamous cell carcinoma (OSCC). Herein, a new nanocomposite, TiO2@Ru@siRNA is constructed from a ruthenium-based photosensitizer (Ru) modified-TiO2 nanoparticles (NPs) loaded with siRNA of hypoxia-inducible factor-1α (HIF-1α). Under visible light irradiation, TiO2@Ru@siRNA can elicit both Type I and Type II photodynamic effects, which causes lysosomal damage, HIF-1α gene silencing, and OSCC cell elimination efficiently. As a consequence of hypoxia relief and pyroptosis induction, TiO2@Ru@siRNA reshapes the immune microenvironment by downregulation of key immunosuppressive factors, upregulation of immune cytokines, and activation of CD4+ and CD8+ T lymphocytes. Furthermore, patient-derived xenograft (PDX) and rat oral experimental carcinogenesis models prove that TiO2@Ru@siRNA-mediated photodynamic therapy significantly inhibits the tumor growth and progression, and markedly enhances cancer immunity. In all, this study presents an effective hypoxia-adaptive photo-immunotherapeutic nanosystem with great potential for OSCC prevention and treatment.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Nanopartículas , Rutênio , Animais , Carcinoma de Células Escamosas/tratamento farmacológico , Linhagem Celular Tumoral , Citocinas , Humanos , Hipóxia , Subunidade alfa do Fator 1 Induzível por Hipóxia , Imunoterapia , Nanopartículas Metálicas , Neoplasias Bucais/tratamento farmacológico , Fármacos Fotossensibilizantes/uso terapêutico , RNA Interferente Pequeno/genética , Ratos , Rutênio/uso terapêutico , Carcinoma de Células Escamosas de Cabeça e Pescoço , Titânio , Microambiente Tumoral
11.
Front Psychiatry ; 13: 905401, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35651823

RESUMO

Background: Nursing is a high-stress occupation that can have an impact on mental health, particularly for neonatal nurses. Job-related stress factors and work-related behaviors have played a critical role in nurses' mental health. This study aimed to explore the prevalence of mood disorders and the impact of social factors, lifestyle on mood disorders among neonatal nurses. Methods: A total of 260 participants comprising neonatal nurses and nurses who work in neonatal intensive care units (NICU) were recruited. Data were collected using a validated generalized anxiety disorder questionnaire, patient health questionnaire-9, Pittsburgh sleep quality index, and social factors and lifestyle assessments. Results: In total, 49.23% of neonatal nurses exhibited mood disorders, particularly a combination of depression and anxiety. Female, poor interpersonal relationships and unhappy marital status, preference for smoking, alcohol, irregular diet, and poor sleep were common in neonatology nurses who exhibited mood disorders; preference for coffee and tea were lower in neonatology nurses without mood disorders (all P < 0.05). Interpersonal relationships, marital status, irregular diet, and poor sleep were independent factors associated with mood disorders among neonatal nurses (all P < 0.05). Mood disorders presented as functional dyspepsia (FD) among 50.78% of the participants (P < 0.05). Poor sleep and preference for smoking were common among neonatal nurses who had FD with mood disorders (all P < 0.05). Furthermore, the preference for sugary beverages was lower in participants with FD and mood disorders (P < 0.05). Poor sleep was independently associated with FD with mood disorders in neonatology nurses (P < 0.05). Conclusion: Prevalence of anxiety and depression was higher among neonatal nurses. Furthermore, most cases of mood disorders presented as FD. Thus, social factors and lifestyle have an impact on mood disorders which can manifest through somatic symptoms.

12.
Cancer Commun (Lond) ; 42(5): 447-470, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35434944

RESUMO

BACKGROUND: Lymphatic metastasis has been associated with poor prognosis in bladder cancer patients with limited therapeutic options. Emerging evidence shows that heat shock factor 1 (HSF1) drives diversified transcriptome to promote tumor growth and serves as a promising therapeutic target. However, the roles of HSF1 in lymphatic metastasis remain largely unknown. Herein, we aimed to illustrate the clinical roles and mechanisms of HSF1 in the lymphatic metastasis of bladder cancer and explore its therapeutic potential. METHODS: We screened the most relevant gene to lymphatic metastasis among overexpressed heat shock factors (HSFs) and heat shock proteins (HSPs), and analyzed its clinical relevance in three cohorts. Functional in vitro and in vivo assays were performed in HSF1-silenced and -regained models. We also used Co-immunoprecipitation to identify the binding proteins of HSF1 and chromatin immunoprecipitation and dual-luciferase reporter assays to investigate the transcriptional program directed by HSF1. The pharmacological inhibitor of HSF1, KRIBB11, was evaluated in popliteal lymph node metastasis models and patient-derived xenograft models of bladder cancer. RESULTS: HSF1 expression was positively associated with lymphatic metastasis status, tumor stage, advanced grade, and poor prognosis of bladder cancer. Importantly, HSF1 enhanced the epithelial-mesenchymal transition (EMT) of cancer cells in primary tumor to initiate metastasis, proliferation of cancer cells in lymph nodes, and macrophages infiltration to facilitate multistep lymphatic metastasis. Mechanistically, HSF1 interacted with protein arginine methyltransferase 5 (PRMT5) and jointly induced the monomethylation of histone H3 at arginine 2 (H3R2me1) and symmetric dimethylation of histone H3 at arginine 2 (H3R2me2s). This recruited the WD repeat domain 5 (WDR5)/mixed-lineage leukemia (MLL) complex to increase the trimethylation of histone H3 at lysine 4 (H3K4me3); resulting in upregulation of lymphoid enhancer-binding factor 1 (LEF1), matrix metallopeptidase 9 (MMP9), C-C motif chemokine ligand 20 (CCL20), and E2F transcription factor 2 (E2F2). Application of KRIBB11 significantly inhibited the lymphatic metastasis of bladder cancer with no significant toxicity. CONCLUSION: Our findings reveal a novel transcriptional program directed by the HSF1-PRMT5-WDR5 axis during the multistep process of lymphatic metastasis in bladder cancer. Targeting HSF1 could be a multipotent and promising therapeutic strategy for bladder cancer patients with lymphatic metastasis.


Assuntos
Fatores de Transcrição de Choque Térmico/metabolismo , Histonas , Neoplasias da Bexiga Urinária , Arginina/metabolismo , Linhagem Celular Tumoral , Histonas/genética , Histonas/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Metástase Linfática , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Neoplasias da Bexiga Urinária/patologia
13.
Cell Cycle ; 21(15): 1557-1577, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35400275

RESUMO

Aberrant expression of circular RNA (circRNA) is involved in the occurrence of various diseases and tumor development, in which plays a vital role, including hepatocellular carcinoma (HCC). Nevertheless, the regulation mechanism and biological function of circITCH in hepatocellular carcinoma (HCC) remain unclear. The expression level of circular RNA itchy E3 ubiquitin protein ligase (circ-ITCH) was identified and validated by real-time polymerase-chain reaction (RT-qPCR) in HCC cell lines. The stability of circITCH was confirmed by Ribonuclease R (RNase R) assay. Subsequently, through silencing and overexpression of circITCH to investigate the functional roles of circITCH in HCC proliferation, invasion, and apoptosis. We also carried out bioinformatics analysis, luciferase reporter assays to define the relationship between microRNA (miR)-184 and circITCH. Moreover, xenograft mouse models and immunohistochemistry were employed to assess the function of circITCH in HCC. CircITCH (hsa_circ_0001141) was a stable circRNA and downregulated in HCC cells. Overexpression of circITCH inhibited cell proliferation, migration, invasion, and promoted apoptosis in vitro and in vivo, whereas knockdown of circITCH had the opposite effects. Mechanistically, miR-184 could be sponged by circITCH, and its overexpression could mitigate the suppressive effects of circITCH overexpression on HCC progression. Through biological website to predict the target genes of miR-184 may be combined. Gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed to investigate mRNAs with significant functional enrichment and pathways, also which its relationship with HCC-related pathway and immune cells. Our findings reveal that circITCH served as a repressor to restrain HCC malignancy via miR-184. Therefore, circITCH may serve as a potential prognostic marker and therapeutic target for HCC.Abbreviations: HCC: hepatocellular carcinoma; CircRNA: Circular RNA; miRNA: MicroRNA; Circ-ITCH: circular RNA itchy E3 ubiquitin protein ligase; RT-qPCR: real-time polymerase-chain reaction; RNase R: Ribonuclease R; CeRNA: competing endogenous RNAs; SiRNA: small interfering RNA.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Nus , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Circular/genética , RNA Interferente Pequeno , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
14.
Cell Mol Life Sci ; 79(3): 135, 2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35179655

RESUMO

Oxaliplatin is the first-line regime for advanced gastric cancer treatment, while its resistance is a major problem that leads to the failure of clinical treatments. Tumor cell heterogeneity has been considered as one of the main causes for drug resistance in cancer. In this study, the mechanism of oxaliplatin resistance was investigated through in vitro human gastric cancer organoids and gastric cancer oxaliplatin-resistant cell lines and in vivo subcutaneous tumorigenicity experiments. The in vitro and in vivo results indicated that CD133+ stem cell-like cells are the main subpopulation and PARP1 is the central gene mediating oxaliplatin resistance in gastric cancer. It was found that PARP1 can effectively repair DNA damage caused by oxaliplatin by means of mediating the opening of base excision repair pathway, leading to the occurrence of drug resistance. The CD133+ stem cells also exhibited upregulated expression of N6-methyladenosine (m6A) mRNA and its writer METTL3 as showed by immunoprecipitation followed by sequencing and transcriptome analysis. METTTL3 enhances the stability of PARP1 by recruiting YTHDF1 to target the 3'-untranslated Region (3'-UTR) of PARP1 mRNA. The CD133+ tumor stem cells can regulate the stability and expression of m6A to PARP1 through METTL3, and thus exerting the PARP1-mediated DNA damage repair ability. Therefore, our study demonstrated that m6A Methyltransferase METTL3 facilitates oxaliplatin resistance in CD133+ gastric cancer stem cells by Promoting PARP1 mRNA stability which increases base excision repair pathway activity.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Metiltransferases/metabolismo , Células-Tronco Neoplásicas/patologia , Oxaliplatina/farmacologia , Poli(ADP-Ribose) Polimerase-1/genética , Estabilidade de RNA , Neoplasias Gástricas/tratamento farmacológico , Antígeno AC133 , Animais , Antineoplásicos/farmacologia , Apoptose , Proliferação de Células , Criança , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Metiltransferases/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Células-Tronco Neoplásicas/efeitos dos fármacos , Poli(ADP-Ribose) Polimerase-1/química , Poli(ADP-Ribose) Polimerase-1/metabolismo , Prognóstico , RNA Mensageiro , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Heliyon ; 8(12): e12518, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36590511

RESUMO

Patient-derived xenograft (PDX) models are more faithful in maintaining the characteristics of human tumors than cell lines and are widely used in drug development, although they have some disadvantages, including their relative low success rate, long turn-around time, and high costs. The collagen gel droplet embedded culture drug sensitivity test (CD-DST) has been used as an in-vitro drug sensitivity test for patients with cancer because of its high success rate of primary cell culture, high sensitivity, and good clinical relevance, but it is based on an in-vitro cell culture and may not simulate the tumor microenvironment accurately. This study aims to combine a PDX model with CD-DST to evaluate the efficiency of antitumor agents. KRpep-2d, a small peptide targeting KRAS (G12D), and oxaliplatin were used to verify the feasibility of this approach. Whole-exome sequencing and Sanger sequencing were first applied to test and validate the KRAS mutation status of a panel of colorectal cancer PDX tissues. One PDX model was verified to carry KRAS (G12D) mutation and was used for in-vivo and the CD-DST drug tests. We then established the PDX mouse model from the patient with the KRAS (G12D) mutation and obtained viable cancer cells derived from the same PDX model. Next, the antitumor abilities of KRpep-2d and oxaliplatin were estimated in the PDX model and the CD-DST. We found that KRpep-2d showed no significant antitumor effect on the xenograft model or on cancer cells derived from the same PDX model. In contrast, oxaliplatin showed significant inhibitory effects in both tests. In conclusion, the PDX model in combination with the CD-DST assay is a comprehensive and feasible method of evaluating the antitumor properties of compounds and could be applied for new drug discovery.

16.
Enzyme Microb Technol ; 153: 109957, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34847438

RESUMO

κ-Carrageenan oligosaccharides from κ-carrageenan hydrolysis are important biochemicals with more bioactivity. Enzyme engineering plays a key role in improving κ-carrageenase catalytic efficiency for production of κ-carrageenan oligosaccharides. Effect of metal ions on enzyme activity, especially stability and efficiency, is main factor in catalytic process, but metal ions addition leads to gelation of κ-carrageenan solution. In this study, molecular dynamics simulation was used to explore the interaction between κ-carrageenase CgkPZ and Ca2+, and Ca2+ bonded to D164 and E167 in the catalytic center resulting in the catalytic efficiency increase. Circular dichroism analysis indicated that the secondary structure of κ-carrageenase could change in the presence of Ca2+. Therefore, a novel self-assembly κ-carrageenase-inorganic hybrid nanoflowers CaNF@CgkPZ was synthesized and systematically characterized. The catalytic efficiency (kcat/Km) of CaNF@CgkPZ was 382.1 mL·mg-1·s-1, increased by 292% compared with free κ-carrageenase. Notably, the enzyme activity of CaNF@CgkPZ was not reduced significantly after 19 cycles use, and 70-100% relative activity was still retained when stored at 4-25 â„ƒ for 15 days. This work provides an efficient approach for κ-carrageenase immobilization with good storage stability, reusability and enhanced catalytic efficiency, which is of great significance in practical applications.


Assuntos
Simulação de Dinâmica Molecular , Catálise , Hidrólise
17.
J Tissue Eng Regen Med ; 15(11): 1012-1022, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34555270

RESUMO

Organoid culture is a recently developed in vitro three-dimensional (3D) cell culture technology. It has wide applications in tissue engineering studies. However, histological analysis of organoid is quite complex and tedious for researchers. This study proposes a user-friendly, affordable and efficient method for making formalin-fixed paraffin embedded (FFPE) organoid blocks and Optimal Cutting Temperature compound (OCT) embedded frozen organoid blocks. This method implements a key pre-embedding step for preparing paraffin embedded organoid blocks, which could concentrate organoid together without damaging or loss of samples. This method could be used to process even a small number of organoids with high efficiency. In addition, with minor modifications, the method is readily applied for OCT embedded organoid blocks. The slides generated were ready for H&E staining, immunohistochemistry staining and immunofluorescent staining. The method described in this study can be easily used for routine histological analysis of organoid, and could be performed in general pathology labs and requires no dedicated equipment and reagent.


Assuntos
Técnicas Citológicas/métodos , Organoides/citologia , Neoplasias Colorretais/patologia , Fluorescência , Formaldeído , Secções Congeladas , Humanos , Inclusão em Parafina , Fixação de Tecidos
18.
J Genet Genomics ; 48(7): 582-594, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34373220

RESUMO

Anlotinib, a novel multitarget tyrosine kinase inhibitor, has shown promising results in the management of various carcinomas. This study aimed to investigate the antitumor activity of anlotinib in oral squamous cell carcinoma (OSCC) and the underlying molecular mechanism. A retrospective clinical study revealed that anlotinib improved the median progression-free survival (mPFS) and median overall survival (mOS) of patients with recurrent and metastatic (R/M) OSCC, respectively. Functional studies revealed that anlotinib markedly inhibited in vitro proliferation of OSCC cells and impeded in vivo tumor growth of OSCC patient-derived xenograft models. Mechanistically, RNA-sequencing identified that oxidative stress, oxidative phosphorylation and AKT/mTOR signaling were involved in anlotinib-treated OSCC cells. Anlotinib upregulated NADPH oxidase 5 (NOX5) expression, elevated reactive oxygen species (ROS) production, impaired mitochondrial respiration, and promoted apoptosis. Moreover, anlotinb also inhibited phospho-Akt (p-AKT) expression and elevated p-eIF2α expression in OSCC cells. NOX5 knockdown attenuated these inhibitory effects and cytotoxicity in anlotinib-treated OSCC cells. Collectively, we demonstrated that anlotinib monotherapy demonstrated favorable anticancer activity and manageable toxicities in patients with R/M OSCC. The antitumor activity of anlotinib in OSCC may be mainly involved in the suppression of mitochondrial respiration via NOX5-mediated redox imbalance and the AKT/eIF2α pathway.


Assuntos
Indóis , Quinolinas
19.
FEBS Open Bio ; 11(9): 2655-2667, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34375503

RESUMO

Gastric cancer is one of the most common malignant cancers globally. Chemotherapy resistance remains a major obstacle in the treatment of gastric cancer, and the molecular mechanisms underlying drug resistance are still not well understood. We previously reported that Zipper interacting protein kinase (ZIPK), also known as death-associated protein kinase3, exerts an oncogenic effect on gastric cancer via activation of Akt/NF-κB signaling and promotion of stemness. Here, we explored the roles of ZIPK in cisplatin resistance. We report that ZIPK enhances cell proliferation and invasion and reduces the antitumor activity of cisplatin in gastric cancer. In addition, our western blot data suggest that ZIPK activated the IL-6/STAT3 signaling pathway. Furthermore, ZIPK increased the expression of IL-6 and multidrug-resistance genes. Using the STAT3 inhibitor stattic to block the IL-6/STAT3 signaling pathway strongly increased the sensitivity of ZIPK-expressed cells to cisplatin. In conclusion, ZIPK may play a role in cisplatin resistance through activation of the IL-6/ STAT3 signaling pathway. Inhibition of STAT3 in gastric cancer overexpressing ZIPK might have potential to improve the efficacy of cisplatin.


Assuntos
Cisplatino/farmacologia , Proteínas Quinases Associadas com Morte Celular/metabolismo , Resistencia a Medicamentos Antineoplásicos , Interleucina-6/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Neoplasias Gástricas/metabolismo , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Proteínas Quinases Associadas com Morte Celular/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Modelos Biológicos , Fator de Transcrição STAT3/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Neoplasias Gástricas/etiologia , Neoplasias Gástricas/patologia
20.
Environ Pollut ; 290: 118016, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34428698

RESUMO

Environmental changes and human activities have deteriorated the quality of groundwater, which is an important source of freshwater in coastal areas. The Jiangsu Coastal Zone (JCZ), which is a typical area of the eastern China coastal zone (ECCZ), has a great demand for clean water resources due to its dense population. The groundwater in the JCZ is affected by both human activities and seawater intrusion. However, research on heavy metals in the groundwater of the JCZ is limited. This study investigated the spatial distribution characteristics and influencing factors of heavy metals in coastal groundwater of Jiangsu Province and conducted a health risk assessment (HRA). Relatively high concentrations of Cu, Cd, Pb, Co, Zn, and Ba existed in the northern JCZ, while As and B predominated in the central JCZ. The main heavy metal pollutants in the groundwater are B and As, with mean values at 0.61 mg/L and 0.02 mg/L, exceeding the standard rate reaching 48.28% and 18.07% respectively. The HRA results showed that B had the largest hazard quotient (HQ), accounting for 50.22% of the total HQs, and As was attributed to the pollutant with the largest cancer risk (CR), accounting for 99.74% of the total CRs. According to the results of the correlation analysis, heavy metals in the groundwater of JCZ mainly originated from industrial pollution, seawater intrusion, and mineral dissolution. Seawater intrusion increases the content of As and B in groundwater, leading to higher health risks. Therefore, the government should strengthen the supervision of seawater intrusion by implementing more effective water resource management policies, or adopting engineering measures such as installing subsurface physical barriers to prevent and control seawater intrusion.


Assuntos
Água Subterrânea , Metais Pesados , Poluentes Químicos da Água , China , Monitoramento Ambiental , Humanos , Metais Pesados/análise , Medição de Risco , Água do Mar , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA