Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 246
Filtrar
1.
Phytomedicine ; 129: 155713, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38735196

RESUMO

BACKGROUND: Oligoasthenozoospermia is the most common type of semen abnormality in male infertile patients. Betaine (BET) has been proved to have pharmacological effects on improving semen quality. BET also belongs to endogenous physiological active substances in the testis. However, the physiological function of BET in rat testis and its pharmacological mechanism against oligoasthenozoospermia remain unclear. PURPOSE: This research aims to prove the therapeutic effect and potential mechanism of BET on oligoasthenozoospermia rat model induced by Tripterygium wilfordii glycosides (TWGs). METHODS: The oligoasthenozoospermia rat model was established by a continuous gavage of TWGs (60 mg/kg) for 28 days. Negative control group, oligoasthenozoospermia group, positive drug group (levocarnitine, 300 mg/kg), and 200 mg/kg, 400 mg/kg, and 800 mg/kg BET groups were created for exploring the therapeutic effect of BET on the oligoasthenozoospermia rat model. The therapeutic effect was evaluated by HE and TUNEL staining. Immunofluorescence assay of DNMT3A, PIWIL1, PRMT5, SETDB1, BHMT2, and METTL3, methylation capture sequencing, Pi-RNA sequencing, and molecular docking were used to elucidate potential pharmacological mechanisms. RESULTS: It is proved that BET can significantly restore testicular pathological damage induced by TWGs, which also can significantly reverse the apoptosis of spermatogenic cells. The spermatogenic cell protein expression levels of DNMT3A, PIWIL1, PRMT5, SETDB1, BHMT2, and METTL3 significantly decreased in oligoasthenozoospermia group. 400 mg/kg and 800 mg/kg BET groups can significantly increase expression level of the above-mentioned proteins. Methylation capture sequencing showed that BET can significantly increase the 5mC methylation level of Spata, Spag, and Specc spermatogenesis-related genes. Pi-RNA sequencing proved that the above-mentioned genes produce a large number of Pi-RNA under BET intervention. Pi-RNA can form complexes with PIWI proteins to participate in DNA methylation of target genes. Molecular docking indicated that BET may not directly act as substrate for methyltransferase and instead participates in DNA methylation by promoting the methionine cycle and increasing S-adenosylmethionine synthesis. CONCLUSION: BET has a significant therapeutic effect on oligoasthenozoospermia rat model induced by TWPs. The mechanism mainly involves that BET can increase the methylation level of Spata, Specc, and Spag target genes through the PIWI/Pi-RNA pathway and up-regulation of methyltransferases (including DNA methyltransferases and histone methyltransferases).

2.
Commun Biol ; 7(1): 565, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745044

RESUMO

Circular RNAs (circRNAs) have recently been suggested as potential functional modulators of cellular physiology processes in gastric cancer (GC). In this study, we demonstrated that circFOXP1 was more highly expressed in GC tissues. High circFOXP1 expression was positively associated with tumor size, lymph node metastasis, TNM stage, and poor prognosis in patients with GC. Cox multivariate analysis revealed that higher circFOXP1 expression was an independent risk factor for disease-free survival (DFS) and overall survival (OS) in GC patients. Functional studies showed that increased circFOXP1 expression promoted cell proliferation, cell invasion, and cell cycle progression in GC in vitro. In vivo, the knockdown of circFOXP1 inhibited tumor growth. Mechanistically, we observed ALKBH5-mediated m6A modification of circFOXP1 and circFOXP1 promoted GC progression by regulating SOX4 expression and sponging miR-338-3p in GC cells. Thus, our findings highlight that circFOXP1 could serve as a novel diagnostic and prognostic biomarker and potential therapeutic target for GC.


Assuntos
Homólogo AlkB 5 da RNA Desmetilase , Progressão da Doença , Fatores de Transcrição Forkhead , Regulação Neoplásica da Expressão Gênica , MicroRNAs , RNA Circular , Fatores de Transcrição SOXC , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/mortalidade , MicroRNAs/genética , MicroRNAs/metabolismo , Fatores de Transcrição SOXC/genética , Fatores de Transcrição SOXC/metabolismo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Masculino , RNA Circular/genética , RNA Circular/metabolismo , Feminino , Homólogo AlkB 5 da RNA Desmetilase/metabolismo , Homólogo AlkB 5 da RNA Desmetilase/genética , Pessoa de Meia-Idade , Linhagem Celular Tumoral , Animais , Camundongos , Proliferação de Células/genética , Camundongos Nus , Prognóstico , Camundongos Endogâmicos BALB C
3.
Epilepsia ; 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38511905

RESUMO

OBJECTIVE: We aim to improve focal cortical dysplasia (FCD) detection by combining high-resolution, three-dimensional (3D) magnetic resonance fingerprinting (MRF) with voxel-based morphometric magnetic resonance imaging (MRI) analysis. METHODS: We included 37 patients with pharmacoresistant focal epilepsy and FCD (10 IIa, 15 IIb, 10 mild Malformation of Cortical Development [mMCD], and 2 mMCD with oligodendroglial hyperplasia and epilepsy [MOGHE]). Fifty-nine healthy controls (HCs) were also included. 3D lesion labels were manually created. Whole-brain MRF scans were obtained with 1 mm3 isotropic resolution, from which quantitative T1 and T2 maps were reconstructed. Voxel-based MRI postprocessing, implemented with the morphometric analysis program (MAP18), was performed for FCD detection using clinical T1w images, outputting clusters with voxel-wise lesion probabilities. Average MRF T1 and T2 were calculated in each cluster from MAP18 output for gray matter (GM) and white matter (WM) separately. Normalized MRF T1 and T2 were calculated by z-scores using HCs. Clusters that overlapped with the lesion labels were considered true positives (TPs); clusters with no overlap were considered false positives (FPs). Two-sample t-tests were performed to compare MRF measures between TP/FP clusters. A neural network model was trained using MRF values and cluster volume to distinguish TP/FP clusters. Ten-fold cross-validation was used to evaluate model performance at the cluster level. Leave-one-patient-out cross-validation was used to evaluate performance at the patient level. RESULTS: MRF metrics were significantly higher in TP than FP clusters, including GM T1, normalized WM T1, and normalized WM T2. The neural network model with normalized MRF measures and cluster volume as input achieved mean area under the curve (AUC) of .83, sensitivity of 82.1%, and specificity of 71.7%. This model showed superior performance over direct thresholding of MAP18 FCD probability map at both the cluster and patient levels, eliminating ≥75% FP clusters in 30% of patients and ≥50% of FP clusters in 91% of patients. SIGNIFICANCE: This pilot study suggests the efficacy of MRF for reducing FPs in FCD detection, due to its quantitative values reflecting in vivo pathological changes. © 2024 International League Against Epilepsy.

4.
World J Gastrointest Surg ; 16(1): 6-12, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38328310

RESUMO

Gastric cancer (GC) is a prevalent malignant tumor within the digestive system, with over 40% of new cases and deaths related to GC globally occurring in China. Despite advancements in treatment modalities, such as surgery supplemented by adjuvant radiotherapy or chemotherapeutic agents, the prognosis for GC remains poor. New targeted therapies and immunotherapies are currently under investigation, but no significant breakthroughs have been achieved. Studies have indicated that GC is a heterogeneous disease, encompassing multiple subtypes with distinct biological characteristics and roles. Consequently, personalized treatment based on clinical features, pathologic typing, and molecular typing is crucial for the diagnosis and management of precancerous lesions of gastric cancer (PLGC). Current research has categorized GC into four subtypes: Epstein-Barr virus-positive, microsatellite instability, genome stability, and chromosome instability (CIN). Technologies such as multi-omics analysis and gene sequencing are being employed to identify more suitable novel testing methods in these areas. Among these, ultrasensitive chromosomal aneuploidy detection (UCAD) can detect CIN at a genome-wide level in subjects using low-depth whole genome sequencing technology, in conjunction with bioinformatics analysis, to achieve qualitative and quantitative detection of chromosomal stability. This editorial reviews recent research advancements in UCAD technology for the diagnosis and management of PLGC.

5.
In Vivo ; 38(2): 630-639, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38418129

RESUMO

BACKGROUND/AIM: Cisplatin [cis-diamminedichloroplatinum(II), CDDP] is a widely used and effective antitumor drug in clinical settings, notorious for its nephrotoxic side effects. This study investigated the mechanisms of CDDP-induced damage in African green monkey kidney (Vero) cells, with a focus on the role of Peroxiredoxin I (Prx I) and Peroxiredoxin II (Prx II) of the peroxiredoxin (Prx) family, which scavenge reactive oxygen species (ROS). MATERIALS AND METHODS: We utilized the Vero cell line derived from African green monkey kidneys and exposed these cells to various concentrations of CDDP. Cell viability, apoptosis, ROS levels, and mitochondrial membrane potential were assessed. RESULTS: CDDP significantly compromised Vero cell viability by elevating both cellular and mitochondrial ROS, which led to increased apoptosis. Pretreatment with the ROS scavenger N-acetyl-L-cysteine (NAC) effectively reduced CDDP-induced ROS accumulation and subsequent cell apoptosis. Furthermore, CDDP reduced Prx I and Prx II levels in a dose- and time-dependent manner. The inhibition of Prx I and II exacerbated cell death, implicating their role in CDDP-induced accumulation of cellular ROS. Additionally, CDDP enhanced the phosphorylation of MAPKs (p38, ERK, and JNK) without affecting AKT. The inhibition of these pathways significantly attenuated CDDP-induced apoptosis. CONCLUSION: The study highlights the involvement of Prx proteins in CDDP-induced nephrotoxicity and emphasizes the central role of ROS in cell death mediation. These insights offer promising avenues for developing clinical interventions to mitigate the nephrotoxic effects of CDDP.


Assuntos
Cisplatino , Peroxirredoxinas , Animais , Chlorocebus aethiops , Cisplatino/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Peroxirredoxinas/metabolismo , Transdução de Sinais , Apoptose , Rim/metabolismo
6.
J Nanobiotechnology ; 22(1): 52, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38321555

RESUMO

Bacterial cystitis, a commonly occurring urinary tract infection (UTI), is renowned for its extensive prevalence and tendency to recur. Despite the extensive utilization of levofloxacin as a conventional therapeutic approach for bacterial cystitis, its effectiveness is impeded by adverse toxic effects, drug resistance concerns, and its influence on the gut microbiota. This study introduces Lev@PADM, a hydrogel with antibacterial properties that demonstrates efficacy in the treatment of bacterial cystitis. Lev@PADM is produced by combining levofloxacin with decellularized porcine acellular dermal matrix hydrogel and exhibits remarkable biocompatibility. Lev@PADM demonstrates excellent stability as a hydrogel at body temperature, enabling direct administration to the site of infection through intravesical injection. This localized delivery route circumvents the systemic circulation of levofloxacin, resulting in a swift and substantial elevation of the antimicrobial agent's concentration specifically at the site of infection. The in vivo experimental findings provide evidence that Lev@PADM effectively prolongs the duration of levofloxacin's action, impedes the retention and invasion of E.coli in the urinary tract, diminishes the infiltration of innate immune cells into infected tissues, and simultaneously preserves the composition of the intestinal microbiota. These results indicate that, in comparison to the exclusive administration of levofloxacin, Lev@PADM offers notable benefits in terms of preserving the integrity of the bladder epithelial barrier and suppressing the recurrence of urinary tract infections.


Assuntos
Derme Acelular , Cistite , Infecções Urinárias , Suínos , Animais , Levofloxacino , Hidrogéis
7.
Carbohydr Polym ; 331: 121855, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38388053

RESUMO

A cellulose nanocrystal (CNC) polymer hydrogel containing magnetic iron oxide nanorods (Fe3O4NRs) was prepared for As(III) removal in water. Systematic studies on the performance of these prepared CNC-based composite hydrogels for the removal of As(III) have been undertaken. The maximum adsorption capacity of the CNC-g-PAA/qP4VP (CPqP) hydrogel was 241.3 mg/g. After introduction of Fe3O4NRs in the hydrogel, the maximum adsorption capacity of the resulting Fe3O4NRs@CNC-g-PAA/qP4VP (FN@CPqP) hydrogel was further improved to 263.0 mg/g. The high adsorption performance can be attributed to the facts that the 3D interconnected porous network of the hydrogel allows As species to easily enter into the hydrogel, the quaternized P4VP chains provides more adsorption sites, Fe3O4NRs uniformly distributed in the internal cavity of the hydrogel significantly reduces the nanoparticle aggregation. The adsorption kinetics indicated that the adsorption of arsenic by the hydrogel was mainly chemisorption. The isotherm analysis revealed that the adsorption of arsenic by the hydrogel was principally monolayer adsorption on a homogeneous surface. Moreover, the as-prepared CNC-based polymer hydrogels exhibited good stability and reusability with negligible performance loss after five adsorption-desorption cycles. The novel FN@CPqP hydrogel demonstrates great potential as a cost-effective adsorbent for the removal of arsenic contaminants from wastewater.

8.
Mol Ther Nucleic Acids ; 35(1): 102126, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38352859

RESUMO

Activating cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) holds great potential for cancer immunotherapy by eliciting type-I interferon (IFN-I) responses. Yet, current approaches to cGAS-STING activation rely on STING agonists, which suffer from difficult formulation, poor pharmacokinetics, and marginal clinical therapeutic efficacy. Here, we report nature-inspired oligonucleotide, Svg3, as a cGAS agonist for cGAS-STING activation in tumor combination immunotherapy. The hairpin-shaped Svg3 strongly binds to cGAS and enhances phase separation to form Svg3-cGAS liquid-like droplets. This results in cGAS-specific immunoactivation and robust IFN-I responses. Remarkably, Svg3 outperforms several state-of-the-art STING agonists in murine and human cells/tissues. Nanoparticle-delivered Svg3 reduces tumor immunosuppression and potentiates immune checkpoint blockade therapeutic efficacy of multiple syngeneic tumor models in wild-type mice, but in neither cGas-/- nor Sting-/- mice. Overall, these results demonstrate the great potential of Svg3 as a cGAS agonistic oligonucleotide for cancer combination immunotherapy.

9.
Orphanet J Rare Dis ; 19(1): 6, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172891

RESUMO

BACKGROUND: Extracorporeal shock wave therapy (ESWT) is reportedly effective for improving spasticity and motor function in children with cerebral palsy (CP). Because late-stage Rett syndrome has a similar presentation, this study aimed to investigate the effects of ESWT on these two diseases. MATERIAL AND METHODS: Patients diagnosed with spastic CP and Rett syndrome received 1500 impulses of ESWT at 4 Hz and 0.1 mJ/mm2, on their spastic legsonce weekly for a total of 12 weeks. Outcomes were assessed before and 4 and 12 weeks after ESWT. Clinical assessments included the Modified Ashworth Scale (MAS), passive range of motion (PROM), and Gross Motor Function Measure 88 (GMFM-88). Ultrasonographic assessments included muscle thickness, acoustic radiation force impulse (ARFI), and strain elastography. RESULTS: Fifteen patients with CP and six with Rett syndrome were enrolled in this study. After ESWT, patients with CP showed significant clinical improvement in the MAS (P = 0.011), ankle PROM (P = 0.002), walking/running/jumping function (P = 0.003), and total function (P < 0.001) of the GMFM-88. The patients with Rett syndrome showed improved MAS scores (P = 0.061) and significantly improved total gross motor function (P = 0.030). Under ARFI, patients with CP demonstrated decreased shear wave speed in the gastrocnemius medial head (P = 0.038). Conversely, patients with Rett syndrome show increased shear-wave speeds after ESWT. CONCLUSION: Our study provides evidence that a weekly course of low-dose ESWT for 12 weeks is beneficial for children with both CP and Rett syndrome, with the clinical effects of reducing spasticity and improving the gross motor function of the lower limbs. The ARFI sonoelastography reveals improvement of muscle stiffness in patients with CP after ESWT, but deteriorated in patients with Rett syndrome. The diverse therapeutic response to ESWT may be caused by the MECP2 mutation in Rett syndrome, having a continuous impact and driving the pathophysiology differently as compared to CP, which is secondary to a static insult. Trial registration IRB 201700462A3. Registered 22March 2017, https://cghhrpms.cgmh.org.tw/HRPMS/Default.aspx .


Assuntos
Paralisia Cerebral , Tratamento por Ondas de Choque Extracorpóreas , Síndrome de Rett , Criança , Humanos , Espasticidade Muscular/terapia , Síndrome de Rett/diagnóstico por imagem , Síndrome de Rett/terapia , Paralisia Cerebral/diagnóstico por imagem , Paralisia Cerebral/terapia , Paralisia Cerebral/complicações , Tratamento por Ondas de Choque Extracorpóreas/efeitos adversos , Músculo Esquelético
10.
Quant Imaging Med Surg ; 14(1): 640-652, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38223035

RESUMO

Background: Recently, deep learning techniques have been widely used in low-dose computed tomography (LDCT) imaging applications for quickly generating high quality computed tomography (CT) images at lower radiation dose levels. The purpose of this study is to validate the reproducibility of the denoising performance of a given network that has been trained in advance across varied LDCT image datasets that are acquired from different imaging systems with different spatial resolutions. Methods: Specifically, LDCT images with comparable noise levels but having different spatial resolutions were prepared to train the U-Net. The number of CT images used for the network training, validation and test was 2,400, 300 and 300, respectively. Afterwards, self- and cross-validations among six selected spatial resolutions (62.5, 125, 250, 375, 500, 625 µm) were studied and compared side by side. The residual variance, peak signal to noise ratio (PSNR), normalized root mean square error (NRMSE) and structural similarity (SSIM) were measured and compared. In addition, network retraining on a small number of image set was performed to fine tune the performance of transfer learning among LDCT tasks with varied spatial resolutions. Results: Results demonstrated that the U-Net trained upon LDCT images having a certain spatial resolution can effectively reduce the noise of the other LDCT images having different spatial resolutions. Regardless, results showed that image artifacts would be generated during the above cross validations. For instance, noticeable residual artifacts were presented at the margin and central areas of the object as the resolution inconsistency increased. The retraining results showed that the artifacts caused by the resolution mismatch can be greatly reduced by utilizing about only 20% of the original training data size. This quantitative improvement led to a reduction in the NRMSE from 0.1898 to 0.1263 and an increase in the SSIM from 0.7558 to 0.8036. Conclusions: In conclusion, artifacts would be generated when transferring the U-Net to a LDCT denoising task with different spatial resolution. To maintain the denoising performance, it is recommended to retrain the U-Net with a small amount of datasets having the same target spatial resolution.

11.
Artigo em Inglês | MEDLINE | ID: mdl-38252186

RESUMO

PURPOSE: Colorectal cancer (CRC) is one of the most common malignancies, with a high incidence and mortality worldwide. Methylated Septin 9 (mSEPT9) has been used clinically as an auxiliary tool for CRC screening. The aim of the present study was to investigate the association of the methylenetetrahydrofolate reductase (MTHFR) rs1801133 polymorphism with the risk of CRC and the methylation status of Septin 9 in CRC. METHODS: Information of 540 patients with a confirmed diagnosis of CRC and with a physical examination were utilized to assess the association of the MTHFR rs1801133 polymorphism with CRC and the methylation of SEPT9. MTHFR rs1801133 polymorphism was genotyped using polymerase chain reaction (PCR). The commercial Septin 9 Gene Methylation(mSEPT9) Detection Kit was used for plasma SEPT9 methylation analysis. RESULTS: Among 540 patients, 61.48% were men and the median age was 54.47 ± 13.14. 65.37% of all colorectal tumors developed in the rectum. 195 patients had negative mSEPT9 methylation, while 345 had positive results. 87 individuals with stage I, 90 with stage II, 287 with stage III, and 76 with stage IV colorectal cancer were included in the sample. The results demonstrated that the positivity rate and degree of methylation of mSEPT9 were remarkably higher in patients with more advanced TNM stages than in those with less advanced stages. The frequencies of the MTHFR rs1801133 CC genotype and allele C carriers in patients with CRC were significantly higher than those in healthy individuals (P = 0.006 and P = 0.001, respectively). The positivity rate of the mSEPT9 assay was significantly higher among the MTHFR rs1801133 TT genotype and allele T carriers than among the CC and allele C carriers respectively. The MTHFR rs1801133 TT genotype and allele T carriers were positively associated with the methylation of SEPT9 (OR = 3.320, 95% CI 1.485-7.424, P = 0.003 and OR = 1.783, 95% CI 1.056-3.010, P = 0.030, respectively). CONCLUSION: In conclusion, individuals harboring the MTHFR rs1801133 CC genotype had a higher risk of CRC and the MTHFR rs1801133 TT carriers were more susceptible to Septin 9 gene methylation.

12.
Plast Reconstr Surg ; 153(2): 348e-360e, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-37171265

RESUMO

BACKGROUND: Adipose tissue engineering plays a key role in the reconstruction of soft-tissue defects. The acellular adipose matrix (AAM) is a promising biomaterial for the construction of engineered adipose tissue. However, AAM lacks sufficient adipoinduction potency because of the abundant loss of matrix-bound adipokines during decellularization. METHODS: An adipose-derived extracellular matrix collagen scaffold, "adipose collagen fragment" (ACF), was prepared using a novel mechanical method that provides sustained release of adipokines. Here, the authors used label-free proteomics methods to detect the protein components in AAM and ACF. In vivo, ACF was incorporated into AAM or acellular dermal matrix and implanted into nude mice to evaluate adipogenesis. Neoadipocytes, neovessels, and corresponding gene expression were evaluated. The effects of ACF on adipogenic differentiation of human adipose-derived stem cells and tube formation by human umbilical vein endothelial cells were tested in vitro. RESULTS: Proteomics analysis showed that ACF contains diverse adipogenic and angiogenic proteins. ACF can release diverse adipokines and induce highly vascularized, mature adipose tissue in AAM, and even in nonadipogenic acellular dermal matrix. Higher expression of adipogenic markers peroxisome proliferator-activated receptor gamma and CCAAT/enhancer-binding protein alpha and greater numbers of tubule structures were observed in ACF-treated groups in vitro. CONCLUSION: The combination of ACF and AAM could serve as a novel and promising strategy to construct mature, vascularized adipose tissue for soft-tissue reconstruction. CLINICAL RELEVANCE STATEMENT: The combined use of AAM and ACF has been proven to induce a highly vascularized, mature, engineered adipose tissue in the nude mouse model, which may serve as a promising strategy for soft-tissue reconstruction.


Assuntos
Tecido Adiposo , Engenharia Tecidual , Camundongos , Animais , Humanos , Engenharia Tecidual/métodos , Camundongos Nus , Preparações de Ação Retardada/metabolismo , Matriz Extracelular/metabolismo , Colágeno/metabolismo , Células Endoteliais da Veia Umbilical Humana , Alicerces Teciduais/química
13.
Int J Radiat Oncol Biol Phys ; 118(2): 337-351, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37597757

RESUMO

This systematic review and meta-analysis reports on outcomes and hepatic toxicity rates after stereotactic body radiation therapy (SBRT) for liver-confined hepatocellular carcinoma (HCC) and presents consensus guidelines regarding appropriate patient management. Using the Preferred Reporting Items for Systemic Review and Meta-Analyses guidelines, a systematic review was performed from articles reporting outcomes at ≥5 years published before October 2022 from the Embase, MEDLINE, Cochrane, and Scopus databases with the following search terms: ("stereotactic body radiotherapy" OR "SBRT" OR "SABR" OR "stereotactic ablative radiotherapy") AND ("hepatocellular carcinoma" OR "HCC"). An aggregated data meta-analysis was conducted to assess overall survival (OS) and local control (LC) using weighted random effects models. In addition, individual patient data analyses incorporating data from 6 institutions were conducted as their own subgroup analyses. Seventeen observational studies, comprising 1889 patients with HCC treated with ≤9 SBRT fractions, between 2003 and 2019, were included in the aggregated data meta-analysis. The 3- and 5-year OS rates after SBRT were 57% (95% confidence interval [CI], 47%-66%) and 40% (95% CI, 29%-51%), respectively. The 3- and 5-year LC rates after SBRT were 84% (95% CI, 77%-90%) and 82% (95% CI, 74%-88%), respectively. Tumor size was the only prognostic factor for LC. Tumor size and region were significantly associated with OS. Five-year LC and OS rates of 79% (95% CI, 0.74-0.84) and 25% (95% CI, 0.20-0.30), respectively, were observed in the individual patient data analyses. Factors prognostic for improved OS were tumor size <3 cm, Eastern region, Child-Pugh score ≤B7, and the Barcelona Clinic Liver Cancer stage of 0 and A. The incidence of severe hepatic toxicity varied according to the criteria applied. SBRT is an effective treatment modality for patients with HCC with mature follow-up. Clinical practice guidelines were developed on behalf of the International Stereotactic Radiosurgery Society (ISRS).


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Radiocirurgia , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Radiocirurgia/efeitos adversos , Resultado do Tratamento , Estudos Retrospectivos
14.
Cancer Cell ; 41(12): 2019-2037.e8, 2023 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-37890493

RESUMO

Intestinal metaplasia (IM) is a pre-malignant condition of the gastric mucosa associated with increased gastric cancer (GC) risk. Analyzing 1,256 gastric samples (1,152 IMs) across 692 subjects from a prospective 10-year study, we identify 26 IM driver genes in diverse pathways including chromatin regulation (ARID1A) and intestinal homeostasis (SOX9). Single-cell and spatial profiles highlight changes in tissue ecology and IM lineage heterogeneity, including an intestinal stem-cell dominant cellular compartment linked to early malignancy. Expanded transcriptome profiling reveals expression-based molecular subtypes of IM associated with incomplete histology, antral/intestinal cell types, ARID1A mutations, inflammation, and microbial communities normally associated with the healthy oral tract. We demonstrate that combined clinical-genomic models outperform clinical-only models in predicting IMs likely to transform to GC. By highlighting strategies for accurately identifying IM patients at high GC risk and a role for microbial dysbiosis in IM progression, our results raise opportunities for GC precision prevention and interception.


Assuntos
Lesões Pré-Cancerosas , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Estudos Prospectivos , Mucosa Gástrica/patologia , Genômica , Metaplasia/genética , Lesões Pré-Cancerosas/genética
15.
Acc Chem Res ; 56(21): 2933-2943, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37802125

RESUMO

The cyclic GMP-AMP synthase-stimulator interferon gene (cGAS-STING) pathway is an emerging therapeutic target for the prophylaxis and therapy of a variety of diseases, ranging from cancer, infectious diseases, to autoimmune disorders. As a cytosolic double stranded DNA (dsDNA) sensor, cGAS can bind with relatively long dsDNA, resulting in conformational change and activation of cGAS. Activated cGAS catalyzes the conversion of adenosine triphosphate (ATP) and guanosine triphosphate (GTP) into cGAMP, a cyclic dinucleotide (CDN). CDNs, including 2'3'-cGAMP, stimulate adapter protein STING on the endoplasmic membrane, triggering interferon regulatory factor 3 (IRF3) phosphorylation and nuclear factor kappa B (NF-κB) activation. This results in antitumor and antiviral type I interferon (IFN-I) responses. Moreover, cGAS-STING overactivation and the resulting IFN-I responses have been associated with a number of inflammatory and autoimmune diseases. This makes cGAS-STING appealing immunomodulatory targets for the prophylaxis and therapy of various related diseases. However, drug development of CDNs and CDN derivatives is challenged by their limited biostability, difficult formulation, poor pharmacokinetics, and inefficient tissue accumulation and cytosolic delivery. Though recent synthetic small molecular CDN- or non-CDN-based STING agonists have been reported with promising preclinical therapeutic efficacy, their therapeutic efficacy and safety remain to be fully evaluated preclinically and clinically. Therefore, it is highly desirable and clinically significant to advance drug development for cGAS-STING activation by innovative approaches, such as drug delivery systems and drug development for pharmacological immunomodulation of cGAS. In this Account, we summarize our recent research in the engineering and delivery of immunostimulatory or immunoregulatory modulators for cGAS and STING for the immunotherapy of cancer and autoimmune diseases. To improve the delivery efficiency of CDNs, we developed ionizable and pH-responsive polymeric nanocarriers to load STING agonists, aiming to improve the cellular uptake and facilitate the endosomal escape to induce efficient STING activation. We also codelivered STING agonists with complementary immunostimulatants in nanoparticle-in-hydrogel composites to synergetically elicit potent innate and adaptive antitumor responses that eradicate local and distant large tumors. Further, taking advantage of the simplicity of manufacturing and the established nucleic acid delivery system, we developed oligonucleotide-based cGAS agonists as immunostimulant immunotherapeutics as well as adjuvants for peptide antigens for cancer immunotherapy. To suppress the overly strong proinflammatory responses associated with cGAS-STING overactivation in some of the autoimmune disorders, we devised nanomedicine-in-hydrogel (NiH) that codelivers a cGAS inhibitor and cell-free DNA (cfDNA)-scavenging cationic nanoparticles (cNPs) for systemic immunosuppression in rheumatoid arthritis (RA) therapy. Lastly, we discussed current drug development by targeting cGAS-STING for cancer, infectious diseases, and autoimmune diseases, as well as the potential opportunities for utilizing cGAS-STING pathway for versatile applications in disease treatment.


Assuntos
Doenças Autoimunes , Doenças Transmissíveis , Interferon Tipo I , Neoplasias , Humanos , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Interferon Tipo I/metabolismo , DNA/metabolismo , Neoplasias/terapia , Imunoterapia , Fatores Imunológicos , Adjuvantes Imunológicos , Hidrogéis
16.
Nanoscale ; 15(38): 15558-15572, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37721121

RESUMO

Single-atom nanozymes (SANs) are the latest trend in biomaterials research and promote the application of single atoms in biological fields and the realization of protein catalysis in vivo with inorganic nanoparticles. Carbon quantum dots (CDs) have excellent biocompatibility and fluorescence properties as a substrate carrying a single atom. It is difficult to break through pure-phase single-atom materials with quantum dots as carriers. In addition, there is currently no related research in the single-atom field in the context of oral cancer, especially head and neck squamous cell carcinoma. This research developed a lipid surface-coated nanozyme combined with CDs, single-atomic gold, and modified lipid ligands (DSPE-PEG) with transferrin (Tf) to treat oral squamous cell carcinoma. The study results have demonstrated that surface-modified single-atom carbon quantum dots (m-SACDs) exhibit excellent therapeutic effects and enable in situ image tracking for diagnosing and treating head and neck squamous carcinoma (HNSCC).


Assuntos
Carcinoma de Células Escamosas , Neoplasias Bucais , Fotoquimioterapia , Humanos , Carcinoma de Células Escamosas/patologia , Neoplasias Bucais/tratamento farmacológico , Carbono/química , Estresse Oxidativo , Lipídeos/química
17.
Radiat Oncol ; 18(1): 129, 2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37542246

RESUMO

PURPOSE: In this study, we aimed to compare the radiation-induced hepatic toxicity (RIHT) outcomes of radiotherapy (RT) plus antibodies against programmed cell death protein 1 (anti-PD1) versus RT alone in patients with hepatocellular carcinoma (HCC), evaluate prognostic factors of non-classic radiation-induced liver disease (ncRILD), and establish a nomogram for predicting the probability of ncRILD. PATIENTS AND METHODS: Patients with unresectable HCC treated with RT and anti-PD1 (RT + PD1, n = 30) or RT alone (n = 66) were enrolled retrospectively. Patients (n = 30) in each group were placed in a matched cohort using propensity score matching (PSM). Treatment-related hepatotoxicity was evaluated and analyzed before and after PSM. The prognostic factors affecting ncRILD were identified by univariable logistic analysis and Spearman's rank test in the matched cohort to generate a nomogram. RESULTS: There were no differences in RIHT except for increased aspartate aminotransferase (AST) ≥ grade 1 and increased total bilirubin ≥ grade 1 between the two groups before PSM. After PSM, AST ≥ grade 1 occurred more frequently in the RT + PD1 group (p = 0.020), and there were no significant differences in other hepatotoxicity metrics between the two groups. In the matched cohort, V25, tumor number, age, and prothrombin time (PT) were the optimal prognostic factors for ncRILD modeling. A nomogram revealed a good predictive performance (area under the curve = 0.82). CONCLUSIONS: The incidence of RIHT in patients with HCC treated with RT + PD1 was acceptable and similar to that of RT treatment. The nomogram based on V25, tumor number, age, and PT robustly predicted the probability of ncRILD.


Assuntos
Carcinoma Hepatocelular , Doença Hepática Induzida por Substâncias e Drogas , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Estudos Retrospectivos , Receptor de Morte Celular Programada 1 , Pontuação de Propensão
18.
Theranostics ; 13(13): 4304-4315, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37649594

RESUMO

Glioblastoma multiforme (GBM) is the most common and lethal type of adult brain cancer. Current GBM standard of care, including radiotherapy, often ends up with cancer recurrence, resulting in limited long-term survival benefits for GBM patients. Immunotherapy, such as immune checkpoint blockade (ICB), has thus far shown limited clinical benefit for GBM patients. Therapeutic vaccines hold great potential to elicit anti-cancer adaptive immunity, which can be synergistically combined with ICB and radiotherapy. Peptide vaccines are attractive for their ease of manufacturing and stability, but their therapeutic efficacy has been limited due to poor vaccine co-delivery and the limited ability of monovalent antigen vaccines to prevent tumor immune evasion. To address these challenges, here, we report GBM radioimmunotherapy that combines radiotherapy, ICB, and multivalent lymph-node-targeting adjuvant/antigen-codelivering albumin-binding vaccines (AAco-AlbiVax). Specifically, to codeliver peptide neoantigens and adjuvant CpG to lymph nodes (LNs), we developed AAco-AlbiVax based on a Y-shaped DNA scaffold that was site-specifically conjugated with CpG, peptide neoantigens, and albumin-binding maleimide-modified Evans blue derivative (MEB). As a result, these vaccines elicited antitumor immunity including neoantigen-specific CD8+ T cell responses in mice. In orthotopic GBM mice, the combination of AAco-AlbiVax, ICB, and fractionated radiation enhanced GBM therapeutic efficacy. However, radioimmunotherapy only trended more efficacious over radiotherapy alone. Taken together, these studies underscore the great potential of radioimmunotherapy for GBM, and future optimization of treatment dosing and scheduling would improve the therapeutic efficacy.


Assuntos
Glioblastoma , Vacinas , Animais , Camundongos , Glioblastoma/radioterapia , Radioimunoterapia , Recidiva Local de Neoplasia , Adjuvantes Imunológicos , Adjuvantes Farmacêuticos , Albuminas , Linfonodos
19.
Adv Sci (Weinh) ; 10(26): e2302575, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37435620

RESUMO

Rheumatoid arthritis (RA) is a systemic autoimmune disease with pathogenic inflammation caused partly by excessive cell-free DNA (cfDNA). Specifically, cfDNA is internalized into immune cells, such as macrophages in lymphoid tissues and joints, and activates pattern recognition receptors, including cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS), resulting in overly strong proinflammation. Here, nanomedicine-in-hydrogel (NiH) is reported that co-delivers cGAS inhibitor RU.521 (RU) and cfDNA-scavenging cationic nanoparticles (cNPs) to draining lymph nodes (LNs) for systemic immunosuppression in RA therapy. Upon subcutaneous injection, NiH prolongs LN retention of RU and cNPs, which pharmacologically inhibit cGAS and scavenged cfDNA, respectively, to inhibit proinflammation. NiH elicits systemic immunosuppression, repolarizes macrophages, increases fractions of immunosuppressive cells, and decreases fractions of CD4+ T cells and T helper 17 cells. Such skewed immune milieu allows NiH to significantly inhibit RA progression in collagen-induced arthritis mice. These studies underscore the great potential of NiH for RA immunotherapy.


Assuntos
Artrite Reumatoide , Ácidos Nucleicos Livres , Camundongos , Animais , Nanomedicina , Hidrogéis , Artrite Reumatoide/terapia , Terapia de Imunossupressão , Nucleotidiltransferases , Imunoterapia , Linfonodos , DNA
20.
bioRxiv ; 2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37502970

RESUMO

Current cancer immunotherapy (e.g., immune checkpoint blockade (ICB)) has only benefited a small subset of patients. Cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) activation holds the potential to improve cancer immunotherapy by eliciting type-I interferon (IFN-I) responses in cancer cells and myeloid cells. Yet, current approaches to this end, mostly by targeting STING, have marginal clinical therapeutic efficacy. Here, we report a cGAS-specific agonistic oligonucleotide, Svg3, as a novel approach to cGAS-STING activation for versatile cancer immunotherapy. Featured with a hairpin structure with consecutive guanosines flanking the stem, Svg3 binds to cGAS and enhances cGAS-Svg3 phase separation to form liquid-like droplets. This results in cGAS activation by Svg3 for robust and dose-dependent IFN-I responses, which outperforms several state-of-the-art STING agonists in murine and human immune cells, and human tumor tissues. Nanocarriers efficiently delivers Svg3 to tissues, cells, and cytosol where cGAS is located. Svg3 reduces tumor immunosuppression and potentiates ICB therapeutic efficacy of multiple syngeneic tumors, in wildtype but neither cGas-/- nor goldenticket Sting-/- mice. Further, as an immunostimulant adjuvant, Svg3 enhances the immunogenicity of peptide antigens to elicit potent T cell responses for robust ICB combination immunotherapy of tumors. Overall, cGAS-agonistic Svg3 is promising for versatile cancer combination immunotherapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA