Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cancer Res ; 83(14): 2358-2371, 2023 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-37195082

RESUMO

Colorectal carcinogenesis coincides with immune cell dysfunction. Metformin has been reported to play a role in stimulating antitumor immunity, suggesting it could be used to overcome immunosuppression in colorectal cancer. Herein, using single-cell RNA sequencing (scRNA-seq), we showed that metformin remodels the immune landscape of colorectal cancer. In particular, metformin treatment expanded the proportion of CD8+ T cells and potentiated their function. Analysis of the metabolic activities of cells in the colorectal cancer tumor microenvironment (TME) at a single-cell resolution demonstrated that metformin reprogrammed tryptophan metabolism, which was reduced in colorectal cancer cells and increased in CD8+ T cells. Untreated colorectal cancer cells outcompeted CD8+ T cells for tryptophan, leading to impaired CD8+ T-cell function. Metformin in turn reduced tryptophan uptake by colorectal cancer cells, thereby restoring tryptophan availability for CD8+ T cells and increasing their cytotoxicity. Metformin inhibited tryptophan uptake in colorectal cancer cells by downregulating MYC, which led to a reduction in the tryptophan transporter SLC7A5. This work highlights metformin as an essential regulator of T-cell antitumor immunity by reprogramming tryptophan metabolism, suggesting it could be a potential immunotherapeutic strategy for treating colorectal cancer. SIGNIFICANCE: Analysis of the impact of metformin on the colorectal cancer immunometabolic landscape at a single-cell resolution shows that metformin alters cancer cell tryptophan metabolism to stimulate CD8+ T-cell antitumor activity.


Assuntos
Neoplasias Colorretais , Metformina , Humanos , Metformina/farmacologia , Metformina/uso terapêutico , Triptofano , Linfócitos T CD8-Positivos , Terapia de Imunossupressão , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Microambiente Tumoral
2.
Nat Microbiol ; 8(5): 919-933, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37069401

RESUMO

Epidemiological studies have indicated an association between statin use and reduced incidence of colorectal cancer (CRC), and work in preclinical models has demonstrated a potential chemopreventive effect. Statins are also associated with reduced dysbiosis in the gut microbiome, yet the role of the gut microbiome in the protective effect of statins in CRC is unclear. Here we validated the chemopreventive role of statins by retrospectively analysing a cohort of patients who underwent colonoscopies. This was confirmed in preclinical models and patient cohorts, and we found that reduced tumour burden was partly due to statin modulation of the gut microbiota. Specifically, the gut commensal Lactobacillus reuteri was increased as a result of increased microbial tryptophan availability in the gut after atorvastatin treatment. Our in vivo studies further revealed that L. reuteri administration suppressed colorectal tumorigenesis via the tryptophan catabolite, indole-3-lactic acid (ILA). ILA exerted anti-tumorigenic effects by downregulating the IL-17 signalling pathway. This microbial metabolite inhibited T helper 17 cell differentiation by targeting the nuclear receptor, RAR-related orphan receptor γt (RORγt). Together, our study provides insights into an anti-cancer mechanism driven by statin use and suggests that interventions with L. reuteri or ILA could complement chemoprevention strategies for CRC.


Assuntos
Neoplasias Colorretais , Inibidores de Hidroximetilglutaril-CoA Redutases , Limosilactobacillus reuteri , Microbiota , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Triptofano , Estudos Retrospectivos , Neoplasias Colorretais/prevenção & controle
3.
Br J Cancer ; 128(2): 363-374, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36396820

RESUMO

BACKGROUND: Chemotherapy resistance is the major cause of recurrence in patients with colorectal cancer (CRC). A previous study found that Fusobacterium (F.) nucleatum promoted CRC chemoresistance. Additionally, metformin rescued F. nucleatum-induced tumorigenicity of CRC. Here, we aimed to investigate whether metformin could revert F. nucleatum-induced chemoresistance and explore the mechanism. METHODS: The role of metformin in F. nucleatum-infected CRC cells was confirmed using cell counting kit 8 assays and CRC xenograft mice. Stemness was identified by tumorsphere formation. Bioinformatic analyses were used to explore the regulatory molecules involved in metformin and F. nucleatum-mediated regulation of the sonic hedgehog pathway. RESULTS: We found that metformin abrogated F. nucleatum-promoted CRC resistance to chemotherapy. Furthermore, metformin attenuated F. nucleatum-stimulated stemness by inhibiting sonic hedgehog signaling. Mechanistically, metformin diminished sonic hedgehog signaling proteins by targeting the MYC/miR-361-5p cascade to reverse F. nucleatum-induced stemness, thereby rescuing F. nucleatum-triggered chemoresistance in CRC. CONCLUSIONS: Metformin acts on F. nucleatum-infected CRC via the MYC/miR-361-5p/sonic hedgehog pathway cascade, subsequently reversing stemness and abolishing F. nucleatum-triggered chemoresistance. Our results identified metformin intervention as a potential clinical treatment for patients with chemoresistant CRC with high amounts of F. nucleatum.


Assuntos
Neoplasias Colorretais , MicroRNAs , Humanos , Animais , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Hedgehog/genética , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Fusobacterium nucleatum , Resistencia a Medicamentos Antineoplásicos/genética
4.
Cell Death Dis ; 12(10): 876, 2021 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-34564711

RESUMO

Chondroitin polymerizing factor (CHPF) is an important glycosyltransferase involved in the biosynthesis of chondroitin sulfate. However, the relationship between CHPF and gastric cancer has not been fully investigated. CHPF expression in gastric cancer tissues was detected by immunohistochemistry and correlated with gastric cancer patient prognosis. Cultured gastric cancer cells and human gastric epithelial cell line GES1 were used to investigate the effects of shCHPF and shE2F1 on the development and progression of gastric cancer by MTT, western blotting, flow cytometry analysis of cell apoptosis, colony formation, transwell and gastric cancer xenograft mouse models, in vitro and in vivo. In gastric cancer tissues, CHPF was found to be significantly upregulated, and its expression correlated with tumor infiltration and advanced tumor stage and shorter patient survival in gastric cancer. CHPF may promote gastric cancer development by regulating cell proliferation, colony formation, cell apoptosis and cell migration, while knockdown induced the opposite effects. Moreover, the results from in vivo experiments demonstrated that tumor growth was suppressed by CHPF knockdown. Additionally, E2F1 was identified as a potential downstream target of CHPF in the regulation of gastric cancer, and its knockdown decreased the CHPF-induced promotion of gastric cancer. Mechanistic study revealed that CHPF may regulate E2F1 through affecting UBE2T-mediated E2F1 ubiquitination. This study showed, for the first time, that CHPF is a potential prognostic indicator and tumor promoter in gastric cancer whose function is likely carried out through the regulation of E2F1.


Assuntos
Carcinogênese/metabolismo , Carcinogênese/patologia , Fator de Transcrição E2F1/metabolismo , N-Acetilgalactosaminiltransferases/metabolismo , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Apoptose/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Neoplasias Gástricas/genética , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitinação , Regulação para Cima/genética
6.
Cancer Cell Int ; 20: 120, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32308565

RESUMO

BACKGROUND: Splicing factor SRSF3 is an oncogene and overexpressed in various kinds of cancers, however, the function and mechanism involved in colorectal cancer (CRC) remained unclear. The aim of this study was to explore the relationship between SRSF3 and carcinogenesis and progression of CRC. METHODS: The expression of SRSF3 in CRC tissues was detected by immunohistochemistry. The proliferation and invasion rate was analyzed by CCK-8 assay, colony formation assay, transwell invasion assay and xenograft experiment. The expression of selected genes was detected by western blot or real time PCR. RESULTS: SRSF3 is overexpressed in CRC tissues and its high expression was associated with CRC differentiation, lymph node invasion and AJCC stage. Upregulation of SRSF3 was also associated with shorter overall survival. Knockdown of SRSF3 in CRC cells activated ArhGAP30/Ace-p53 and decreased cell proliferation, migration and survival; while ectopic expression of SRSF3 attenuated ArhGAP30/Ace-p53 and increases cell proliferation, migration and survival. Targeting SRSF3 in xenograft tumors suppressed tumor progression in vivo. CONCLUSIONS: Taken together, our data identify SRSF3 as a regulator for ArhGAP30/Ace-p53 in CRC, and highlight potential prognostic and therapeutic significance of SRSF3 in CRC.

7.
Oncogene ; 38(23): 4512-4526, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30742098

RESUMO

Liver fibrosis and fibrosis-associated hepatocarcinogenesis are driven by chronic inflammation and are leading causes of morbidity and death worldwide. SYK signaling regulates critical processes in innate and adaptive immunity, as well as parenchymal cells. We discovered high SYK expression in the parenchymal hepatocyte, hepatic stellate cell (HSC), and the inflammatory compartments in the fibrotic liver. We postulated that targeting SYK would mitigate hepatic fibrosis and oncogenic progression. We found that inhibition of SYK with the selective small molecule inhibitors Piceatannol and PRT062607 markedly protected against toxin-induced hepatic fibrosis, associated hepatocellular injury and intra-hepatic inflammation, and hepatocarcinogenesis. SYK inhibition resulted in increased intra-tumoral expression of the p16 and p53 but decreased expression of Bcl-xL and SMAD4. Further, hepatic expression of genes regulating angiogenesis, apoptosis, cell cycle regulation, and cellular senescence were affected by targeting SYK. We found that SYK inhibition mitigated both HSC trans-differentiation and acquisition of an inflammatory phenotype in T cells, B cells, and myeloid cells. However, in vivo experiments employing selective targeted deletion of SYK indicated that only SYK deletion in the myeloid compartment was sufficient to confer protection against fibrogenic progression. Targeting SYK promoted myeloid cell differentiation into hepato-protective TNFαlow CD206hi phenotype downregulating mTOR, IL-8 signaling and oxidative phosphorylation. Collectively, these data suggest that SYK is an attractive target for experimental therapeutics in treating hepatic fibrosis and oncogenesis.


Assuntos
Cirrose Hepática/patologia , Células Mieloides/metabolismo , Transdução de Sinais , Quinase Syk/metabolismo , Animais , Carcinogênese , Carcinoma Hepatocelular/metabolismo , Transdiferenciação Celular , Cicloexilaminas/farmacologia , Feminino , Fibrose , Células Estreladas do Fígado/citologia , Humanos , Interleucina-8/metabolismo , Lectinas Tipo C/metabolismo , Fígado/metabolismo , Neoplasias Hepáticas/metabolismo , Masculino , Receptor de Manose , Lectinas de Ligação a Manose/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias Experimentais , Fosforilação Oxidativa , Fenótipo , Pirimidinas/farmacologia , Receptores de Superfície Celular/metabolismo , Estilbenos/farmacologia , Quinase Syk/antagonistas & inibidores , Transcriptoma
8.
Cancer Cell ; 34(5): 757-774.e7, 2018 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-30423296

RESUMO

Pancreatic ductal adenocarcinoma (PDA) is characterized by immune tolerance and immunotherapeutic resistance. We discovered upregulation of receptor-interacting serine/threonine protein kinase 1 (RIP1) in tumor-associated macrophages (TAMs) in PDA. To study its role in oncogenic progression, we developed a selective small-molecule RIP1 inhibitor with high in vivo exposure. Targeting RIP1 reprogrammed TAMs toward an MHCIIhiTNFα+IFNγ+ immunogenic phenotype in a STAT1-dependent manner. RIP1 inhibition in TAMs resulted in cytotoxic T cell activation and T helper cell differentiation toward a mixed Th1/Th17 phenotype, leading to tumor immunity in mice and in organotypic models of human PDA. Targeting RIP1 synergized with PD1-and inducible co-stimulator-based immunotherapies. Tumor-promoting effects of RIP1 were independent of its co-association with RIP3. Collectively, our work describes RIP1 as a checkpoint kinase governing tumor immunity.


Assuntos
Carcinoma Ductal Pancreático/imunologia , Tolerância Imunológica/imunologia , Macrófagos/imunologia , Neoplasias Pancreáticas/imunologia , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Linfócitos T Citotóxicos/imunologia , Células Th1/imunologia , Células Th17/imunologia , Animais , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Humanos , Tolerância Imunológica/genética , Células L , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Proteína Serina-Treonina Quinases de Interação com Receptores/antagonistas & inibidores , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Fator de Transcrição STAT1/metabolismo , Células Th1/citologia , Células Th17/citologia
9.
Clin Lab ; 64(4): 497-505, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29739071

RESUMO

BACKGROUND: Cluster of differentiation 24 (CD24) has recently been reported as a biomarker for colorectal cancer. However, the clinical and prognostic significance of CD24 in colorectal cancer remains controversial. Therefore, we performed a meta-analysis to clarify this issue. METHODS: A comprehensive literature search was performed using Medline, Embase, Web of Science, and CNKI, and the statistical analysis was conducted using Stata software. RESULTS: A total of thirteen studies including 2,180 cases were included in this meta-analysis. The pooled analysis indicated that CD24 expression was associated with lymph node invasion (RR = 0.71 (negative versus positive), 95% CI = 0.52 - 0.96, p = 0.02, Figure 3), differentiation (RR = 0.81 (well versus poor), 95% CI = 0.67 - 0.99, p = 0.04), and T stage (RR = 0.74 (T1 + T2 versus T3 + T4), 95% CI = 0.65 - 0.85, p = 0.00). The prognosis analysis also suggested CD24 overexpression indicating poorer 5-year OS rate (RR = 0.74, 95% CI = 0.58 - 0.93, p = 0.01) However, CD24 was not associated with other clinicopathological features such as tumor size, tumor grade, distant metastasis, TNM stage and Dukes stage. CONCLUSIONS: Taken together, this meta-analysis suggested that CD24 is an efficient prognostic factor in colorectal cancer.


Assuntos
Biomarcadores Tumorais/genética , Antígeno CD24/genética , Neoplasias Colorretais/genética , Linfonodos/metabolismo , Biomarcadores Tumorais/metabolismo , Antígeno CD24/metabolismo , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Humanos , Linfonodos/patologia , Metástase Linfática , Gradação de Tumores , Invasividade Neoplásica , Estadiamento de Neoplasias , Prognóstico
10.
Cancer Sci ; 108(8): 1544-1555, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28502111

RESUMO

The function and clinical implication of ArfGAP with SH3 domain, ankyrin repeat, and PH domain 3 (ASAP3) in colorectal cancer (CRC) remains undefined. In the present study, we showed that the expression level of ASAP3 was dramatically increased in CRC and its upregulation was associated with American Joint Committee on Cancer stage (P < 0.001) and poor prognosis (P = 0.0022). The combination of stage and ASAP3 expression improved the prediction of survival in CRC patients. Suppression of ASAP3 inhibited cell proliferation by inducing G1 phase arrest without influencing apoptosis. ASAP3 promoted growth of colon tumors in mice with colitis, and accelerated cell invasion and migration in vitro. Increased ASAP3 was associated with activation of the nuclear factor-κB (NF-κB) canonical pathway in CRC. Upregulation of ASAP3 increased the phosphorylation and nuclear translocation of the p65 NF-κB subunit. Mechanistically, ASAP3 interacts with NF-κB essential modulator (NEMO) and could reduce the polyubiquitinylation of NEMO. Overall, ASAP3 might regulate NF-κB via binding to NEMO. ASAP3 acts as an oncogene in colonic cancer and could be a potential biomarker of colon carcinogenesis.


Assuntos
Colite/complicações , Neoplasias Colorretais/patologia , Proteínas Ativadoras de GTPase/genética , Quinase I-kappa B/metabolismo , NF-kappa B/metabolismo , Regulação para Cima , Idoso , Animais , Apoptose , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Colite/genética , Neoplasias Colorretais/genética , Feminino , Proteínas Ativadoras de GTPase/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos Knockout , Pessoa de Meia-Idade , Transplante de Neoplasias , Prognóstico , Transdução de Sinais , Análise de Sobrevida , Ubiquitinação
11.
Oncotarget ; 8(8): 12866-12876, 2017 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-28030817

RESUMO

CD44v6 has recently been reported as a biomarker for colorectal cancer. However, the clinical and prognostic significance of CD44v6 in colorectal cancer remains controversial. Therefore, we performed a meta-analysis to clarify this issue. A comprehensive literature search was performed using Medline, Embase and Web of Science, and the statistical analysis was conducted using Stata software. A total of twenty-one studies including 3918 colorectal cancer cases were included. The pooled analysis showed that CD44v6 overexpression in colorectal cancer was an independent prognostic marker correlating with lower 5-year overall survival rate (OR=0.78, 95%CI =0.67-0.91, p=0.001). CD44v6 overexpression was also associated with more lymph node invasion (OR=1.48, 95%CI= 1.02-2.15, p=0.04), and advanced Dukes stage (OR=2.47, 95%CI= 1.29-4.73, p=0.01). In addition, while excluding Zolbec's study, CD44v6 overexpression was associated with distance metastasis (OR=1.65, 95%CI =1.13-2.40, p=0.01). Taken together, this meta-analysis suggested that CD44v6 is an efficient prognostic factor in colorectal cancer.


Assuntos
Biomarcadores Tumorais/análise , Neoplasias Colorretais/patologia , Receptores de Hialuronatos/biossíntese , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/mortalidade , Humanos , Invasividade Neoplásica/patologia , Prognóstico , Regulação para Cima
12.
Cell Res ; 22(9): 1374-89, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22491477

RESUMO

Natural antisense transcripts (NATs) exist ubiquitously in mammalian genomes and play roles in the regulation of gene expression. However, both the existence of bidirectional antisense RNA regulation and the possibility of protein-coding genes that function as antisense RNAs remain speculative. Here, we found that the protein-coding gene, deoxyhypusine synthase (DHPS), as the NAT of WDR83, concordantly regulated the expression of WDR83 mRNA and protein. Conversely, WDR83 also regulated DHPS by antisense pairing in a concordant manner. WDR83 and DHPS were capable of forming an RNA duplex at overlapping 3' untranslated regions and this duplex increased their mutual stability, which was required for the bidirectional regulation. As a pair of protein-coding cis-sense/antisense transcripts, WDR83 and DHPS were upregulated simultaneously and correlated positively in gastric cancer (GC), driving GC pathophysiology by promoting cell proliferation. Furthermore, the positive relationship between WDR83 and DHPS was also observed in other cancers. The bidirectional regulatory relationship between WDR83 and DHPS not only enriches our understanding of antisense regulation, but also provides a more complete understanding of their functions in tumor development.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Regiões 3' não Traduzidas , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Fator de Transcrição E2F1/metabolismo , Humanos , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/antagonistas & inibidores , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Interferência de RNA , Estabilidade de RNA , RNA Antissenso/metabolismo , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Regulação para Cima
13.
Mol Carcinog ; 51(2): 174-84, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21520296

RESUMO

Aberrant janus kinase/signal transducers and activators of transcription (JAK/STAT) signaling is involved in the oncogenesis of several cancers. Suppressors of cytokine signaling (SOCS) genes and SH2-containing protein tyrosine phosphatase 1 (SHP1) proteins, which are negative regulators of JAK/STAT signaling, have been reported to have tumor suppressor functions. However, in colorectal cancer (CRC) cells, the mechanisms that regulate SOCS and SHP1 genes, and the cause of abnormalities in the JAK/STAT signaling pathway, remain largely unknown. The present study shows that trichostatin A (TSA), a histone deacetylase (HDAC) inhibitor, leads to the hyperacetylation of histones associated with the SOCS1 and SOCS3 promoters, but not the SHP1 promoter in CRC cells. This indicates that histone modifications are involved in the regulation of SOCS1 and SOCS3. Moreover, upregulation of SOCS1 and SOCS3 expression was achieved using TSA, which also significantly downregulated JAK2/STAT3 signaling in CRC cells. We also demonstrate that TSA suppresses the growth of CRC cells, and induces G1 cell cycle arrest and apoptosis through the regulation of downstream targets of JAK2/STAT3 signaling, including Bcl-2, survivin and p16(ink4a) . Therefore, our data demonstrate that TSA may induce SOCS1 and SOCS3 expression by inducing histone modifications and consequently inhibits JAK2/STAT3 signaling in CRC cells. These results also establish a mechanistic link between the inhibition of JAK2/STAT3 signaling and the anticancer action of TSA in CRC cells.


Assuntos
Neoplasias Colorretais/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Histonas/metabolismo , Ácidos Hidroxâmicos/farmacologia , Janus Quinase 2/metabolismo , Regiões Promotoras Genéticas , Fator de Transcrição STAT3/metabolismo , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Acetilação , Sequência de Bases , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Neoplasias Colorretais/genética , Primers do DNA , Humanos
14.
J Cell Physiol ; 227(6): 2421-9, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21826656

RESUMO

Although the two isoforms of signal transducer and activator of transcription 5 (STAT5) protein, STAT5a and STAT5b, have 94% sequence identity, they are encoded by different genes. Previous studies have been unable to define clearly the roles of the STAT5 genes in colorectal cancer (CRC). To investigate the role of STAT5 isoforms in CRC oncogenesis, immunohistochemical staining was performed. Colorectal adenocarcinomas showed higher expression of STAT5a/5b than normal colonic mucosa (P < 0.05), and STAT5b expression was significantly higher than that of STAT5a in colorectal adenocarcinoma tissue (P < 0.05). Furthermore, STAT5b expression was significantly associated with TNM stage. To delineate the roles of STAT5a/5b in CRC carcinogenesis, we studied CRC cells depleted of each isoform by treating the cells with small interfering RNA. Both STAT5a and STAT5b were found to be involved in cell growth, cell cycle progression, and apoptosis of CRC cells, and exerted their effects via the regulation of downstream targets of the STAT genes. However, STAT5b influenced CRC cell apoptosis more than STAT5a (P < 0.05), reducing mitochondrial membrane potential and generating reactive oxygen species. In conclusion, both isoforms of STAT5 are involved in the growth and cell cycle progression of CRC cells, STAT5b could play a more important role than STAT5a in the clinicopathological characteristics of CRC and CRC cell apoptosis.


Assuntos
Adenocarcinoma/metabolismo , Apoptose , Neoplasias Colorretais/metabolismo , Potencial da Membrana Mitocondrial , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Fator de Transcrição STAT5/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Adenocarcinoma/genética , Adenocarcinoma/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Feminino , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Interferência de RNA , Fator de Transcrição STAT5/genética , Fatores de Tempo , Análise Serial de Tecidos , Transfecção , Proteínas Supressoras de Tumor/genética , Regulação para Cima
15.
J Cell Mol Med ; 16(8): 1878-88, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22050790

RESUMO

Abnormalities in the JAK2/STAT3 pathway are involved in the pathogenesis of colorectal cancer (CRC), including apoptosis. However, the exact mechanism by which dysregulated JAK2/STAT3 signalling contributes to the apoptosis has not been clarified. To investigate the role of both JAK2 and STAT3 in the mechanism underlying CRC apoptosis, we inhibited JAK2 with AG490 and depleted STAT3 with a small interfering RNA. Our data showed that inhibition of JAK2/STAT3 signalling induced CRC cellular apoptosis via modulating the Bcl-2 gene family, promoting the loss of mitochondrial transmembrane potential (Δψm) and the increase of reactive oxygen species. In addition, our results demonstrated that the translocation of cytochrome c (Cyt c), caspase activation and cleavage of poly (ADP-ribose) polymerase (PARP) were present in apoptotic CRC cells after down-regulation of JAK2/STAT3 signalling. Moreover, inhibition of JAK2/STAT3 signalling suppressed CRC xenograft tumour growth. We found that JAK2/STAT3 target genes were decreased; meanwhile caspase cascade was activated in xenograft tumours. Our findings illustrated the biological significance of JAK2/STAT3 signalling in CRC apoptosis, and provided novel evidence that inhibition of JAK2/STAT3 induced apoptosis via the mitochondrial apoptotic pathway. Therefore, JAK2/STAT3 signalling may be a potential target for therapy of CRC.


Assuntos
Apoptose , Neoplasias Colorretais/enzimologia , Neoplasias Colorretais/patologia , Janus Quinase 2/antagonistas & inibidores , Mitocôndrias/metabolismo , Fator de Transcrição STAT3/antagonistas & inibidores , Transdução de Sinais , Animais , Apoptose/genética , Caspases/metabolismo , Linhagem Celular Tumoral , Neoplasias Colorretais/genética , Citocromos c/metabolismo , Citosol/efeitos dos fármacos , Citosol/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Janus Quinase 2/metabolismo , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Camundongos Nus , Mitocôndrias/efeitos dos fármacos , Modelos Biológicos , Poli(ADP-Ribose) Polimerases/metabolismo , Transporte Proteico/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , RNA Interferente Pequeno/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/genética , Tirfostinas/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
16.
J Biol Chem ; 287(8): 5819-32, 2012 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-22205702

RESUMO

The progression of colorectal carcinoma (CRC) to invasive and metastatic disease may involve localized occurrences of epithelial-mesenchymal transition (EMT). However, mechanisms of the EMT process in CRC progression are not fully understood. We previously showed that knockdown of signal transducer and activator of transcription 3 (STAT3) up-regulated E-cadherin (a key component in EMT progression) in CRC. In this study, we examined the roles of STAT3 in CRC EMT and ZEB1, an EMT inducer, in STAT3-induced down-regulation of E-cadherin. Knockdown of STAT3 significantly increased E-cadherin and decreased N-cadherin and vimentin expressions in highly invasive LoVo CRC cells. Meanwhile, overexpression of STAT3 significantly reduced E-cadherin and enhanced N-cadherin and vimentin expressions in weakly invasive SW1116 CRC cells. Activation of STAT3 significantly increased CRC cell invasiveness and resistance to apoptosis. Knockdown of STAT3 dramatically enhanced chemosensitivity of CRC cells to fluorouracil. STAT3 regulated ZEB1 expression in CRC cells, and the STAT3-induced decrease in E-cadherin and cell invasion depended on activation of ZEB1 in CRC cells. Additionally, pSTAT3(Tyr-705) and ZEB1 expressions were significantly correlated with TNM (tumor, lymph node, and metastasis stages) (p < 0.01). In conclusion, STAT3 may directly mediate EMT progression and regulate ZEB1 expression in CRC. ZEB1 may participate in STAT3-induced cell invasion and E-cadherin down-regulation in CRC cells. The expressions of pSTAT3(Tyr-705) and ZEB1 may be positively associated with CRC metastasis. Our data may provide potential targets to prevent and/or treat CRC invasion and metastasis.


Assuntos
Caderinas/genética , Caderinas/metabolismo , Neoplasias Colorretais/patologia , Regulação para Baixo , Transição Epitelial-Mesenquimal , Proteínas de Homeodomínio/metabolismo , Fator de Transcrição STAT3/metabolismo , Fatores de Transcrição/metabolismo , Apoptose , Sequência de Bases , Linhagem Celular Tumoral , Neoplasias Colorretais/genética , Proteínas de Homeodomínio/genética , Humanos , Janus Quinases/metabolismo , Dados de Sequência Molecular , Invasividade Neoplásica , Metástase Neoplásica , Fosfoproteínas/metabolismo , Transdução de Sinais , Fatores de Transcrição/genética , Vimentina/genética , Vimentina/metabolismo , Homeobox 1 de Ligação a E-box em Dedo de Zinco
17.
PLoS One ; 6(10): e25872, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21998710

RESUMO

As a newly identified and characterized gene, p42.3 is associated with cell proliferation and tumorigenicity. The expression of p42.3 is upregulated in human gastric cancer (GC), but its underlying mechanisms of action are not well understood. MicroRNAs (miRNAs) are known to play vital regulatory roles in many cellular processes. Here we utilized bioinformatics and experimental approaches to investigate the regulatory relationship between miRNAs and the p42.3 gene. We showed that miR-29a could repress p42.3 expression at both the mRNA and protein levels via directly binding to its 3'UTR. Furthermore, an inverse relationship was observed between miR-29a and p42.3 expression in gastric cancer cell lines and GC tissue samples, especially in cases where p42.3 was downregulated. Taken together, we have elucidated previously unrecognized roles of miR-29a and indicated that miR-29a may function, at least partially, by targeting the p42.3 gene in human GC.


Assuntos
Pontos de Checagem do Ciclo Celular/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Regulação para Baixo/genética , MicroRNAs/genética , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Regiões 3' não Traduzidas/genética , Idoso , Sequência de Bases , Linhagem Celular Tumoral , Proliferação de Células , Biologia Computacional , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas Nucleares , Neoplasias Gástricas/metabolismo
18.
PLoS One ; 6(8): e23262, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21826244

RESUMO

The trafficking protein particle complex 4 (TRAPPC4) is implicated in vesicle-mediated transport, but its association with disease has rarely been reported. We explored its potential interaction with ERK2, part of the ERK1/2 complex in the Extracellular Signal-regulated Kinase/ Mitogen-activated Protein Kinase (ERK-MAPK) pathway, by a yeast two-hybrid screen and confirmed by co-immunoprecipitation (Co-IP) and glutathione S-transferase (GST) pull-down. Further investigation found that when TRAPPC4 was depleted, activated ERK1/2 specifically decreased in the nucleus, which was accompanied with cell growth suppression and apoptosis in colorectal cancer (CRC) cells. Overexpression of TRAPPC4 promoted cell viability and caused activated ERK1/2 to increase overall, but especially in the nucleus. TRAPPC4 was expressed more highly in the nucleus of CRC cells than in normal colonic epithelium or adenoma which corresponded with nuclear staining of pERK1/2. We demonstrate here that TRAPPC4 may regulate cell proliferation and apoptosis in CRC by interaction with ERK2 and subsequently phosphorylating ERK1/2 as well as modulating the subcellular location of pERK1/2 to activate the relevant signaling pathway.


Assuntos
Núcleo Celular/metabolismo , Neoplasias Colorretais/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Apoptose/genética , Apoptose/fisiologia , Western Blotting , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Sobrevivência Celular/fisiologia , Neoplasias Colorretais/genética , Humanos , Imuno-Histoquímica , Imunoprecipitação , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/genética , Interferência de RNA , Análise Serial de Tecidos , Técnicas do Sistema de Duplo-Híbrido , Proteínas de Transporte Vesicular/genética
19.
J Biomater Sci Polym Ed ; 22(13): 1777-97, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-20843434

RESUMO

Vitrectomy is a common procedure for treating ocular-related diseases. The surgery involves removing the vitreous humor from the center of the eye, and vitreous substitutes are needed to replace the vitreous humor after vitrectomy. In the present study, we developed a colorless, transparent and injectable hydrogel with appropriate refractive index as a vitreous substitute. The hydrogel is formed by oxidated hyaluronic acid (oxi-HA) cross-linked with adipic acid dihydrazide (ADH). Hyaluronic acid (HA) was oxidized by sodium periodate to create aldehyde functional groups, which could be cross-linked by ADH. The refractive index of this hydrogel ranged between 1.3420 and 1.3442, which is quite similar to human vitreous humor (1.3345). The degradation tests demonstrated that the hydrogel could maintain the gel matrix over 35 days, depending on the ADH concentration. In addition, the cytotoxicity was evaluated on retina pigmented epithelium (RPE) cells cultivated following the ISO standard (tests for in vitro cytotoxicity), and the hydrogel was found to be non-toxic. In a preliminary animal study, the oxi-HA/ADH hydrogel was injected into the vitreous cavity of rabbit eyes. The evaluations of slit-lamp observation, intraocular pressure, cornea thickness and histological examination showed no significant abnormal biological reactions for 3 weeks. This study suggests that the injectable oxi-HA/ADH hydrogel should be a potential vitreous substitute.


Assuntos
Adipatos/química , Ácido Hialurônico/química , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Próteses e Implantes , Corpo Vítreo , Adipatos/administração & dosagem , Animais , Humanos , Ácido Hialurônico/administração & dosagem , Hidrogel de Polietilenoglicol-Dimetacrilato/administração & dosagem , Injeções , Oxirredução , Coelhos
20.
Biochem Biophys Res Commun ; 396(2): 177-81, 2010 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-20438699

RESUMO

Cytosine DNA methylation, covalent histone modifications, and RNA-mediated gene regulation are the major aspects of epigenetic regulation. Natural antisense transcripts (NATs), as a new member of regulatory RNAs, occur ubiquitously in prokaryote and eukaryote, and play significant roles in physiological or pathological processes. NATs, mostly non-coding RNAs, are involved in transcriptional interference, genomic imprinting, X inactivation, RNA editing, translational regulation, RNA export, DNA methylation, histone modifications, and so on. NATs regulate gene expression through direct interaction with the sense transcripts or indirect interaction with other targets, such as DNA methyltransferases, histone acetylases and histone deacetylases. There may be a direct link among NATs, DNA methylaton and histone modifications. Through formation of sense-antisense duplex structures, NATs exert a widespread impact on conventional gene expression at the mRNA and/or protein level and regulate sense transcripts in a concordant or discordant manner. As one of the important components in epigenetics, NATs could be a potentially rich source for scientists to exploit in the therapy of cancers and other diseases.


Assuntos
Epigênese Genética , RNA Antissenso/metabolismo , Transcrição Gênica/genética , Animais , Metilação de DNA , Humanos , RNA Antissenso/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA