Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Protein Sci ; 33(3): e4903, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38358137

RESUMO

The combined effects of the cellular environment on proteins led to the definition of a fifth level of protein structural organization termed quinary structure. To explore the implication of potential quinary structure for globular proteins, we studied the dynamics and conformations of Escherichia coli (E. coli) peptidyl-prolyl cis/trans isomerase B (PpiB) in E. coli cells. PpiB plays a major role in maturation and regulation of folded proteins by catalyzing the cis/trans isomerization of the proline imidic peptide bond. We applied electron paramagnetic resonance (EPR) techniques, utilizing both Gadolinium (Gd(III)) and nitroxide spin labels. In addition to using standard spin labeling approaches with genetically engineered cysteines, we incorporated an unnatural amino acid to achieve Gd(III)-nitroxide orthogonal labeling. We probed PpiB's residue-specific dynamics by X-band continuous wave EPR at ambient temperatures and its structure by double electron-electron resonance (DEER) on frozen samples. PpiB was delivered to E. coli cells by electroporation. We report a significant decrease in the dynamics induced by the cellular environment for two chosen labeling positions. These changes could not be reproduced by adding crowding agents and cell extracts. Concomitantly, we report a broadening of the distance distribution in E. coli, determined by Gd(III)-Gd(III) DEER measurements, as compared with solution and human HeLa cells. This suggests an increase in the number of PpiB conformations present in E. coli cells, possibly due to interactions with other cell components, which also contributes to the reduction in mobility and suggests the presence of a quinary structure.


Assuntos
Escherichia coli , Óxidos de Nitrogênio , Proteínas , Humanos , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Escherichia coli/genética , Escherichia coli/química , Células HeLa , Marcadores de Spin , Proteínas/química
2.
Biophys J ; 123(2): 172-183, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38071428

RESUMO

Heat shock protein 90 (Hsp90) serves as a crucial regulator of cellular proteostasis by stabilizing and regulating the activity of numerous substrates, many of which are oncogenic proteins. Therefore, Hsp90 is a drug target for cancer therapy. Hsp90 comprises three structural domains, a highly conserved amino-terminal domain (NTD), a middle domain (MD), and a carboxyl-terminal domain (CTD). The CTD is responsible for protein dimerization, is crucial for Hsp90's activity, and has therefore been targeted for inhibiting Hsp90. Here we addressed the question of whether the CTD dimerization in Hsp90, in the absence of bound nucleotides, is modulated by allosteric effects from the other domains. We studied full length (FL) and isolated CTD (isoC) yeast Hsp90 spin-labeled with a Gd(III) tag by double electron-electron resonance measurements to track structural differences and to determine the apparent dissociation constant (Kd). We found the distance distributions for both the FL and isoC to be similar, indicating that the removal of the NTD and MD does not significantly affect the structure of the CTD dimer. The low-temperature double electron-electron resonance-derived Kd values, as well as those obtained at room temperature using microscale thermophoresis and native mass spectrometry, collectively suggested the presence of some allosteric effects from the NTDs and MDs on the CTD dimerization stability in the apo state. This was evidenced by a moderate increase in the Kd for the isoC compared with the FL mutants. Our results reveal a fine regulation of the CTD dimerization by allosteric modulation, which may have implications for drug targeting strategies in cancer therapy.


Assuntos
Neoplasias , Saccharomyces cerevisiae , Humanos , Dimerização , Saccharomyces cerevisiae/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Multimerização Proteica , Ligação Proteica
3.
Anal Chem ; 94(2): 901-908, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34958555

RESUMO

GSH, Cys, Hcy, and H2S are important biothiols and play important roles in the living systems. Quantitative and simultaneous determination of these biothiols under physiological conditions is still a challenge. Herein, we developed an effective 19F-reactive tag that readily interacts with these four biothiols for the generation of stable thioether products that have distinguishable 19F-chemical shifts. These thioester compounds encode the characteristic fingerprint profiles of each biothiols, allowing one to simultaneously quantify and determine these biothiols by 1D 19F NMR spectroscopy. The intra-/extracellular GSH in live cells was assessed by the established strategy, and remarkable variations in the GSH stability were determined between the normal mammalian cells and cancer cells. It is notable that GSH hydrolyzes efficiently in the out-membrane of the cancer cells and the lysates. In contrast, GSH remains stable in the tested normal cells.


Assuntos
Cisteína , Glutationa , Animais , Corantes Fluorescentes/química , Homocisteína , Espectrometria de Fluorescência/métodos
4.
Chemistry ; 27(65): 16145-16152, 2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34595784

RESUMO

Site specific installation of a paramagnetic ion with magnetic anisotropy in a biomolecule generates valuable structural restraints, such as pseudocontact shifts (PCSs) and residual dipolar couplings (RDCs). These paramagnetic effects can be used to characterize the structures, interactions and dynamics of biological macromolecules and their complexes. Two single-armed DOTA-like tags, BrPSPy-DO3M(S)A-Ln and BrPSPy-6M-DO3M(S)A-Ln, each containing a thiol-specific reacting group, that is, a phenylsulfonyl pyridine moiety, are demonstrated as rigid, reactive and stable paramagnetic tags for protein modification by formation of a reducing resistant thioether bond between the protein and the tag. The two tags present high reactivity with the solvent exposed thiol group in aqueous solution at room temperature. The introduction of Br at the meta-position in pyridine enhances the reactivity of 4-phenylsulfonyl pyridine towards the solvent exposed thiol group in a protein, whereas the ortho-methyl group in pyridine increases the rigidity of the tag in the protein conjugates. The high performance of these two tags has been demonstrated in different cysteine mutants of ubiquitin and GB1. The high reactivity and rigidity of these two tags can be added in the toolbox of paramagnetic tags suitable for the high-resolution NMR measurements of biological macromolecules and their complexes.


Assuntos
Elementos da Série dos Lantanídeos , Ressonância Magnética Nuclear Biomolecular , Proteínas , Piridinas , Compostos de Sulfidrila
5.
Proc Natl Acad Sci U S A ; 117(1): 395-404, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31862713

RESUMO

Hsp90 plays a central role in cell homeostasis by assisting folding and maturation of a large variety of clients. It is a homo-dimer, which functions via hydrolysis of ATP-coupled to conformational changes. Hsp90's conformational cycle in the absence of cochaperones is currently postulated as apo-Hsp90 being an ensemble of "open"/"closed" conformations. Upon ATP binding, Hsp90 adopts an active ATP-bound closed conformation where the N-terminal domains, which comprise the ATP binding site, are in close contact. However, there is no consensus regarding the conformation of the ADP-bound Hsp90, which is considered important for client release. In this work, we tracked the conformational states of yeast Hsp90 at various stages of ATP hydrolysis in frozen solutions employing electron paramagnetic resonance (EPR) techniques, particularly double electron-electron resonance (DEER) distance measurements. Using rigid Gd(III) spin labels, we found the C domains to be dimerized with same distance distribution at all hydrolysis states. Then, we substituted the ATPase Mg(II) cofactor with paramagnetic Mn(II) and followed the hydrolysis state using hyperfine spectroscopy and measured the inter-N-domain distance distributions via Mn(II)-Mn(II) DEER. The point character of the Mn(II) spin label allowed us resolve 2 different closed states: The ATP-bound (prehydrolysis) characterized by a distance distribution having a maximum of 4.3 nm, which broadened and shortened, shifting the mean to 3.8 nm at the ADP-bound state (posthydrolysis). This provides experimental evidence to a second closed conformational state of Hsp90 in solution, referred to as "compact." Finally, the so-called high-energy state, trapped by addition of vanadate, was found structurally similar to the posthydrolysis state.


Assuntos
Proteínas Fúngicas/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Domínios Proteicos/genética , Leveduras/metabolismo , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas de Choque Térmico HSP90/química , Proteínas de Choque Térmico HSP90/genética , Manganês/química , Modelos Moleculares , Mutação , Marcadores de Spin , Leveduras/genética
6.
Chembiochem ; 20(21): 2738-2742, 2019 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-31136055

RESUMO

Unstable and low-abundance protein complexes represent a large family of transient protein complexes that are difficult to characterize, even by means of high-resolution NMR spectroscopy. A method to assign the NMR signals of these unstable complexes through a combination of selective isotope labeling of amino acids in a protein and site-specific labeling the protein with a paramagnetic tag is presented herein. By using this method, the resonances of unstable thioester intermediate complex (lifetime <5 h and highest concentration ≈20 µm) generated by Staphylococcus aureus sortase A and its peptide substrate under a real-time reaction have been assigned.


Assuntos
Aminoácidos/química , Marcação por Isótopo/métodos , Complexos Multienzimáticos/química , Ressonância Magnética Nuclear Biomolecular/métodos , Conformação Proteica , Aminoácidos/metabolismo , Aminoaciltransferases/química , Aminoaciltransferases/genética , Aminoaciltransferases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cisteína Endopeptidases/química , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Estabilidade Enzimática , Modelos Moleculares , Complexos Multienzimáticos/metabolismo , Isótopos de Nitrogênio/química , Isótopos de Nitrogênio/metabolismo , Ligação Proteica , Staphylococcus aureus/enzimologia , Staphylococcus aureus/genética , Especificidade por Substrato
7.
Chembiochem ; 20(15): 1953-1958, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30958607

RESUMO

Accumulation of filamentous aggregates of α-synuclein (AS) in Lewy bodies and neurites is characteristic of neurodegenerative diseases such as Parkinson's disease. Inhibition of AS fibrillation is helpful for understanding of AS aggregate structure and for developing chemical therapies. Herein, we report that the PtII -containing antitumor drug cisplatin suppresses filamentous aggregation of AS in solution. PtII thus contrasts strongly with reported transition-metal ions such as MnII , FeIII , and CuII , which accelerate AS aggregation. Interaction between PtII and the side chains of methionine and histidine residues was essential for inhibition of AS fibrillation. Binding of PtII to AS did not change the protein's overall random coil structure, as indicated by solution-state two-dimensional NMR and circular dichroism spectroscopy; and a solution of the AS⋅PtII complex remained free of filamentous aggregates. Our results constitute interesting new information about the biological chemistry of metal ions in Parkinson's disease and might open new lines of research into the suppression of filamentous aggregation.


Assuntos
Antineoplásicos/farmacologia , Cisplatino/farmacologia , Platina/farmacologia , alfa-Sinucleína/antagonistas & inibidores , Antineoplásicos/química , Cisplatino/química , Platina/química , Agregados Proteicos/efeitos dos fármacos , Soluções , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
8.
Sci Rep ; 8(1): 16371, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30401805

RESUMO

Thioesters are key intermediates in biology, which often are generated from less energy-rich amide precursors. Staphylococcus aureus sortase A (SrtA) is an enzyme widely used in biotechnology for peptide ligation. The reaction proceeds in two steps, where the first step involves the conversion of an amide bond of substrate peptide into a thioester intermediate with the enzyme. Here we show that the free energy required for this step is matched by an about 30-fold increase in binding affinity of a calcium ion at the calcium binding site of SrtA, which is remote from the thioester bond. The magnitude of this allosteric effect highlights the importance of calcium for the activity of SrtA. The increase in calcium binding affinity upon binding of substrate not only achieves catalytic formation of an energy-rich intermediate in the absence of nucleotide triphosphates or any tight non-covalent enzyme-substrate interactions, but is also accompanied by accumulation of the labile thioester intermediate, which makes it directly observable in nuclear magnetic resonance (NMR) spectra.


Assuntos
Amidas/química , Aminoaciltransferases/metabolismo , Proteínas de Bactérias/metabolismo , Cálcio/metabolismo , Cisteína Endopeptidases/metabolismo , Ésteres/química , Peptídeos/química , Peptídeos/metabolismo , Staphylococcus aureus/enzimologia , Motivos de Aminoácidos , Aminoaciltransferases/química , Aminoaciltransferases/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Biocatálise , Domínio Catalítico , Cisteína Endopeptidases/química , Cisteína Endopeptidases/genética , Modelos Moleculares , Mutação , Ligação Proteica , Termodinâmica
9.
Sci Rep ; 7(1): 16630, 2017 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-29192194

RESUMO

The X-chromosome linked inhibitor of apoptosis (XIAP) is a multidomain metalloprotein involved in caspase inhibition and in copper homeostasis. It contains three zinc-binding baculoviral IAP repeats (BIR) domains, which are responsible for caspase interaction. Recently, it has been suggested that the BIR domains can bind copper, however high resolution data on such interaction is missing. Here we characterize by NMR the structural properties of BIR1 in solution, and the effects of its interaction with copper both in vitro and in physiological environments. BIR1 is dimeric in solution, consistent with the X-ray structure. Cysteine 12, located in the unfolded N-terminal region, has a remarkably low redox potential, and is prone to oxidation even in reducing physiological environments. Interaction of BIR1 with copper(II) results in the oxidation of cysteine 12, with the formation of either an intermolecular disulfide bond between two BIR1 molecules or a mixed disulfide bond with glutathione, whereas the zinc binding site is not affected by the interaction.


Assuntos
Cobre/metabolismo , Domínios e Motivos de Interação entre Proteínas , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/química , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo , Algoritmos , Sítios de Ligação , Células Cultivadas , Cobre/química , Humanos , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Modelos Teóricos , Conformação Molecular , Mutação , Oxirredução , Ligação Proteica , Soluções , Relação Estrutura-Atividade , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/genética
10.
Nat Commun ; 8(1): 1042, 2017 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-29051492

RESUMO

Store-operated calcium entry (SOCE) is a major pathway for calcium ions influx into cells and has a critical role in various cell functions. Here we demonstrate that calcium-bound calmodulin (Ca2+-CaM) binds to the core region of activated STIM1. This interaction facilitates slow Ca2+-dependent inactivation after Orai1 channel activation by wild-type STIM1 or a constitutively active STIM1 mutant. We define the CaM-binding site in STIM1, which is adjacent to the STIM1-Orai1 coupling region. The binding of Ca2+-CaM to activated STIM1 disrupts the STIM1-Orai1 complex and also disassembles STIM1 oligomer. Based on these results we propose a model for the calcium-bound CaM-regulated deactivation of SOCE.


Assuntos
Cálcio/metabolismo , Calmodulina/metabolismo , Proteínas de Neoplasias/metabolismo , Proteína ORAI1/metabolismo , Molécula 1 de Interação Estromal/metabolismo , Células HEK293 , Humanos , Proteínas de Neoplasias/química , Ligação Proteica , Domínios Proteicos , Molécula 1 de Interação Estromal/química
11.
Phys Chem Chem Phys ; 19(39): 26944-26956, 2017 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-28956044

RESUMO

High-affinity chelating tags for Gd(iii) and Mn(ii) ions that provide valuable high-resolution distance restraints for biomolecules were used as spin labels for double electron-electron resonance (DEER) measurements. The availability of a generic tag that can bind both metal ions and provide a narrow and predictable distance distribution for both ions is attractive owing to their different EPR-related characteristics. Herein we introduced two paramagnetic tags, 4PSPyMTA and 4PSPyNPDA, which are conjugated to cysteine residues through a stable thioether bond, forming a short and, depending on the metal ion coordination mode, a rigid tether with the protein. These tags exhibit high affinity for both Mn(ii) and Gd(iii) ions. The DEER performance of the 4PSPyMTA and 4PSPyNPDA tags, in complex with Gd(iii) or Mn(ii), was evaluated for three double cysteine mutants of ubiquitin, and the Gd(iii)-Gd(iii) and Mn(ii)-Mn(ii) distance distributions they generated were compared. All three Gd(iii) complexes of the ubiquitin-PyMTA and ubiquitin-PyNPDA conjugates produced similar and expected distance distributions. In contrast, significant variations in the maxima and widths of the distance distributions were observed for the Mn(ii) analogs. Furthermore, whereas PyNPDA-Gd(iii) and PyNPDA-Mn(ii) delivered similar distance distributions, appreciable differences were observed for two mutants with PyMTA, with the Mn(ii) analog exhibiting a broader distance distribution and shorter distances. ELDOR (electron-electron double resonance)-detected NMR measurements revealed some distribution in the Mn(ii) coordination environment for the protein conjugates of both tags but not for the free tags. The broader distance distributions generated by 4PSPyMTA-Mn(ii), as compared with Gd(iii), were attributed to the distributed location of the Mn(ii) ion within the PyMTA chelate owing to its smaller size and lower coordination number that leave the pyridine nitrogen uncoordinated. Accordingly, in terms of distance resolution, 4PSPyNPDA can serve as an effective generic tag for Gd(iii) and Mn(ii), whereas 4PSPyMTA is efficient for Gd(iii) only. This comparison between Gd(iii) and Mn(ii) suggests that PyMTA model compounds may not predict sufficiently well the performance of PyMTA-Mn(ii) as a tag for high-resolution distance measurements in proteins because the protein environment can influence its coordination mode.


Assuntos
Espectroscopia de Ressonância de Spin Eletrônica , Proteínas/química , Quelantes , Cisteína , Elétrons , Gadolínio , Íons , Espectroscopia de Ressonância Magnética , Manganês , Marcadores de Spin , Ubiquitina
12.
Angew Chem Int Ed Engl ; 55(44): 13744-13748, 2016 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-27701815

RESUMO

Enzyme catalysis relies on conformational plasticity, but structural information on transient intermediates is difficult to obtain. We show that the three-dimensional (3D) structure of an unstable, low-abundance enzymatic intermediate can be determined by nuclear magnetic resonance (NMR) spectroscopy. The approach is demonstrated for Staphylococcus aureus sortase A (SrtA), which is an established drug target and biotechnological reagent. SrtA is a transpeptidase that converts an amide bond of a substrate peptide into a thioester. By measuring pseudocontact shifts (PCSs) generated by a site-specific cysteine-reactive paramagnetic tag that does not react with the active-site residue Cys184, a sufficient number of restraints were collected to determine the 3D structure of the unstable thioester intermediate of SrtA that is present only as a minor species under non-equilibrium conditions. The 3D structure reveals structural changes that protect the thioester intermediate against hydrolysis.


Assuntos
Aminoaciltransferases/química , Proteínas de Bactérias/química , Cisteína Endopeptidases/química , Ressonância Magnética Nuclear Biomolecular , Staphylococcus aureus/enzimologia , Aminoaciltransferases/metabolismo , Proteínas de Bactérias/metabolismo , Cisteína Endopeptidases/metabolismo , Modelos Moleculares , Estrutura Molecular , Conformação Proteica
13.
J Biomol NMR ; 64(2): 103-13, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26732873

RESUMO

Design of a paramagnetic metal binding motif in a protein is a valuable way for understanding the function, dynamics and interactions of a protein by paramagnetic NMR spectroscopy. Several strategies have been proposed to site-specifically tag proteins with paramagnetic lanthanide ions. Here we report a simple approach of engineering a transition metal binding motif via site-specific labelling of a protein with 2-vinyl-8-hydroxyquinoline (2V-8HQ). The protein-2V-8HQ adduct forms a stable complex with transition metal ions, Mn(II), Co(II), Ni(II), Cu(II) and Zn(II). The paramagnetic effects generated by these transition metal ions were evaluated by NMR spectroscopy. We show that 2V-8HQ is a rigid and stable transition metal binding tag. The coordination of the metal ion can be assisted by protein sidechains. More importantly, tunable paramagnetic tensors are simply obtained in an α-helix that possesses solvent exposed residues in positions i and i + 3, where i is the residue to be mutated to cysteine, i + 3 is Gln or Glu or i - 4 is His. The coordination of a sidechain carboxylate/amide or imidazole to cobalt(II) results in different structural geometries, leading to different paramagnetic tensors as shown by experimental data.


Assuntos
Quelantes/química , Ressonância Magnética Nuclear Biomolecular , Oxiquinolina/química , Ubiquitina/química , Animais , Humanos
14.
Dalton Trans ; 44(48): 20812-6, 2015 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-26575837

RESUMO

Mn(2+) chelating tags for Mn(2+)-Mn(2+) distance measurements by pulse EPR spectroscopy were developed. They feature a stable C-S conjugation to the protein, high reactivity towards cysteine thiols and short and rigid linkers that can be used in distance measurements with high resolution under reductive conditions. Double electron-electron resonance measurements at 95 GHz on ubiquitin labeled with these tags showed the expected narrow distance distribution.


Assuntos
Carbono/química , Manganês/química , Enxofre/química , Cisteína/química , Espectroscopia de Ressonância de Spin Eletrônica , Elétrons , Ubiquitina/química
15.
J Biol Chem ; 289(40): 27376-85, 2014 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-25124042

RESUMO

SATB1 is essential for T-cell development and growth and metastasis of multitype tumors and acts as a global chromatin organizer and gene expression regulator. The DNA binding ability of SATB1 plays vital roles in its various biological functions. We report the crystal structure of the N-terminal module of SATB1. Interestingly, this module contains a ubiquitin-like domain (ULD) and a CUT repeat-like (CUTL) domain (ULD-CUTL tandem). Detailed biochemical experiments indicate that the N terminus of SATB1 (residues 1-248, SATB1((1-248))), including the extreme 70 N-terminal amino acids, and the ULD-CUTL tandem bind specifically to DNA targets. Our results show that the DNA binding ability of full-length SATB1 requires the contribution of the CUTL domain, as well as the CUT1-CUT2 tandem domain and the homeodomain. These findings may reveal a multiple-domain-coordinated mechanism whereby SATB1 recognizes DNA targets.


Assuntos
Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação à Região de Interação com a Matriz/química , Proteínas de Ligação à Região de Interação com a Matriz/metabolismo , Sequência Rica em At , Sequência de Aminoácidos , Animais , Cristalografia por Raios X , DNA/química , DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação à Região de Interação com a Matriz/genética , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Estrutura Terciária de Proteína , Alinhamento de Sequência , Ubiquitina
16.
Chem Asian J ; 9(7): 1808-16, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24850806

RESUMO

The chemical modification of proteins is a valuable technique in understanding the functions, interactions, and dynamics of proteins. Reactivity and selectivity are key issues in current chemical modification of proteins. The Michael addition-like thiol-ene reaction is a useful tool that can be used to tag proteins with high selectivity for the solvent-exposed thiol groups of proteins. To obtain insight into the bioconjugation of proteins with this method, a kinetic analysis was performed. New vinyl-substituted pyridine derivatives were designed and synthesized. The reactivity of these vinyl tags with L-cysteine was evaluated by UV absorption and high-resolution NMR spectroscopy. The results show that protonation of pyridine plays a key role in the overall reaction rates. The kinetic parameters were assessed in protein modification. The different reactivities of these vinyl tags with solvent-exposed cysteine is valuable information in the selective labeling of proteins with multiple functional groups.


Assuntos
Sondas Moleculares/química , Proteínas/química , Técnicas de Química Sintética , Cisteína/química , Cinética , Espectroscopia de Ressonância Magnética/métodos , Sondas Moleculares/síntese química , Piridinas/química , Compostos de Vinila/química
17.
Nucleic Acids Res ; 42(4): 2750-7, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24288378

RESUMO

Single-stranded DNA (ssDNA) binding protein (SSB) is an essential protein to protect ssDNA and recruit specific ssDNA-processing proteins. Escherichia coli SSB forms a tetramer at neutral pH, comprising a structurally well-defined ssDNA binding domain (OB-domain) and a disordered C-terminal domain (C-domain) of ∼ 64 amino acid residues. The C-terminal eight-residue segment of SSB (C-peptide) has been shown to interact with the OB-domain, but crystal structures failed to reveal any electron density of the C-peptide. Here we show that SSB forms a monomer at pH 3.4, which is suitable for studies by high-resolution nuclear magnetic resonance (NMR) spectroscopy. The OB-domain retains its 3D structure in the monomer, and the C-peptide is shown by nuclear Overhauser effects and lanthanide-induced pseudocontact shifts to bind to the OB-domain at a site that harbors ssDNA in the crystal structure of the SSB-ssDNA complex. (15)N relaxation data demonstrate high flexibility of the polypeptide segment linking the C-peptide to the OB-domain and somewhat increased flexibility of the C-peptide compared with the OB-domain, suggesting that the C-peptide either retains high mobility in the bound state or is in a fast equilibrium with an unbound state.


Assuntos
Proteínas de Ligação a DNA/química , Proteínas de Escherichia coli/química , Sítios de Ligação , DNA de Cadeia Simples/química , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Peptídeos/metabolismo , Ligação Proteica
18.
J Biomol NMR ; 50(4): 411-20, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21786031

RESUMO

Paramagnetic relaxation enhancements from unpaired electrons observed in nuclear magnetic resonance (NMR) spectra present powerful long-range distance restraints. The most frequently used paramagnetic tags, however, are tethered to the protein via disulfide bonds, requiring proteins with single cysteine residues for covalent attachment. Here we present a straightforward strategy to tag proteins site-specifically with paramagnetic lanthanides without a tether and independent of cysteine residues. It relies on preferential binding of the complex between three dipicolinic acid molecules (DPA) and a lanthanide ion (Ln(3+)), [Ln(DPA)(3)](3-), to a pair of positively charged amino acids whose charges are not compensated by negatively charged residues nearby. This situation rarely occurs in wild-type proteins, allowing the creation of specific binding sites simply by introduction of positively charged residues that are positioned far from glutamate or aspartate residues. The concept is demonstrated with the hnRNPLL RRM1 domain. In addition, we show that histidine- and arginine-tags present binding sites for [Ln(DPA)(3)](3-).


Assuntos
Marcação por Isótopo/métodos , Elementos da Série dos Lantanídeos/química , Ressonância Magnética Nuclear Biomolecular/métodos , Ácidos Picolínicos/química , Proteínas/química , Animais , Sítios de Ligação , Proteínas de Escherichia coli , Ribonucleoproteínas Nucleares Heterogêneas , Modelos Moleculares , Proteínas/metabolismo
19.
J Biomol NMR ; 47(2): 143-53, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20405166

RESUMO

Paramagnetic relaxation enhancements (PRE) present a powerful source of structural information in nuclear magnetic resonance (NMR) studies of proteins and protein-ligand complexes. In contrast to conventional PRE reagents that are covalently attached to the protein, the complex between gadolinium and three dipicolinic acid (DPA) molecules, [Gd(DPA)(3)](3-), can bind to proteins in a non-covalent yet site-specific manner. This offers straightforward access to PREs that can be scaled by using different ratios of [Gd(DPA)(3)](3-) to protein, allowing quantitative distance measurements for nuclear spins within about 15 A of the Gd(3+) ion. Such data accurately define the metal position relative to the protein, greatly enhancing the interpretation of pseudocontact shifts induced by [Ln(DPA)(3)](3-) complexes of paramagnetic lanthanide (Ln(3+)) ions other than gadolinium. As an example we studied the quaternary structure of the homodimeric GCN4 leucine zipper.


Assuntos
Espectroscopia de Ressonância de Spin Eletrônica/métodos , Gadolínio/química , Compostos Organometálicos/química , Proteínas/química , Fatores de Transcrição de Zíper de Leucina Básica/química , Distribuição de Qui-Quadrado , Meios de Contraste/química , Elementos da Série dos Lantanídeos/química , Zíper de Leucina , Modelos Moleculares , Isótopos de Nitrogênio/química , Peptídeos/química , Ácidos Picolínicos/química , Conformação Proteica , Proteínas de Saccharomyces cerevisiae/química
20.
PLoS Negl Trop Dis ; 3(12): e561, 2009 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-19997625

RESUMO

BACKGROUND: The two-component NS2B-NS3 proteases of West Nile and dengue viruses are essential for viral replication and established targets for drug development. In all crystal structures of the proteases to date, the NS2B cofactor is located far from the substrate binding site (open conformation) in the absence of inhibitor and lining the substrate binding site (closed conformation) in the presence of an inhibitor. METHODS: In this work, nuclear magnetic resonance (NMR) spectroscopy of isotope and spin-labeled samples of the West Nile virus protease was used to investigate the occurrence of equilibria between open and closed conformations in solution. FINDINGS: In solution, the closed form of the West Nile virus protease is the predominant conformation irrespective of the presence or absence of inhibitors. Nonetheless, dissociation of the C-terminal part of the NS2B cofactor from the NS3 protease (open conformation) occurs in both the presence and the absence of inhibitors. Low-molecular-weight inhibitors can shift the conformational exchange equilibria so that over 90% of the West Nile virus protease molecules assume the closed conformation. The West Nile virus protease differs from the dengue virus protease, where the open conformation is the predominant form in the absence of inhibitors. CONCLUSION: Partial dissociation of NS2B from NS3 has implications for the way in which the NS3 protease can be positioned with respect to the host cell membrane when NS2B is membrane associated via N- and C-terminal segments present in the polyprotein. In the case of the West Nile virus protease, discovery of low-molecular-weight inhibitors that act by breaking the association of the NS2B cofactor with the NS3 protease is impeded by the natural affinity of the cofactor to the NS3 protease. The same strategy can be more successful in the case of the dengue virus NS2B-NS3 protease.


Assuntos
Coenzimas/química , Serina Endopeptidases/química , Proteínas não Estruturais Virais/química , Vírus do Nilo Ocidental/enzimologia , Sítios de Ligação , Coenzimas/genética , Coenzimas/metabolismo , Espectroscopia de Ressonância Magnética , Conformação Molecular , Conformação Proteica , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Vírus do Nilo Ocidental/química , Vírus do Nilo Ocidental/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA