Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Adv Sci (Weinh) ; : e2404510, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39257029

RESUMO

Synovial Sarcomas (SS) are characterized by the presence of the SS18::SSX fusion gene, which protein product induce chromatin changes through remodeling of the BAF complex. To elucidate the genomic events that drive phenotypic diversity in SS, we performed RNA and targeted DNA sequencing on 91 tumors from 55 patients. Our results were verified by proteomic analysis, public gene expression cohorts and single-cell RNA sequencing. Transcriptome profiling identified three distinct SS subtypes resembling the known histological subtypes: SS subtype I and was characterized by hyperproliferation, evasion of immune detection and a poor prognosis. SS subtype II and was dominated by a vascular-stromal component and had a significantly better outcome. SS Subtype III was characterized by biphasic differentiation, increased genomic complexity and immune suppression mediated by checkpoint inhibition, and poor prognosis despite good responses to neoadjuvant therapy. Chromosomal abnormalities were an independent significant risk factor for metastasis. KRT8 was identified as a key component for epithelial differentiation in biphasic tumors, potentially controlled by OVOL1 regulation. Our findings explain the histological grounds for SS classification and indicate that a significantly larger proportion of patients have high risk tumors (corresponding to SS subtype I) than previously believed.

2.
Sheng Li Xue Bao ; 76(3): 376-384, 2024 Jun 25.
Artigo em Chinês | MEDLINE | ID: mdl-38939932

RESUMO

The present study aimed to explore the effects of different exercise modes on neuromuscular junction (NMJ) and metabolism of skeletal muscle-related proteins in aging rats. Ten from 38 male Sprague-Dawley (SD) rats (3-month-old) were randomly selected into young (Y) group, while the rest were raised to 21 months old and randomly divided into elderly control (O), endurance exercise (EN) and resistance exercise (R) groups. After 8 weeks of corresponding exercises training, the gastrocnemius muscles of rats were collected, and the expression of S100B in Schwann cells was detected by immunofluorescence staining. Western blot was used to detect the protein expression levels of agglutinate protein (Agrin), low-density lipoprotein receptor-related protein 4 (Lrp4), muscle- specific kinase protein (MuSK), downstream tyrosine kinase 7 (Dok7), phosphorylated protein kinase B (p-Akt), phosphorylated mammalian target rapamycin (p-mTOR), and phosphorylated forkhead box O1 (p-FoxO1) in rat gastrocnemius muscles. The results showed that, endurance and resistance exercises increased the wet weight ratio of gastrocnemius muscle in the aging rats. The protein expression of S100B in the R group was significantly higher than those in the O and EN groups. Proteins related to NMJ function, including Agrin, Lrp4, MuSK, and Dok7 were significantly decreased in the O group compared with those in the Y group. Resistance exercise up-regulated these four proteins in the aging rats, whereas endurance exercise could not reverse the protein expression levels of Lrp4, MuSK and Dok7. Regarding skeletal muscle-related proteins, the O group showed down-regulated p-Akt, and p-mTOR protein expression levels and up-regulated p-FoxO1 protein expression level, compared to the Y group. Resistance and endurance exercises reversed the changes in p-mTOR and p-FoxO1 protein expression in the aging rats. These findings demonstrate that both exercise modes can enhance NMJ function, increase protein synthesis and reduce the catabolism of skeletal muscle-related proteins in aging rats, with resistance exercise showing a more pronounced effect.


Assuntos
Envelhecimento , Músculo Esquelético , Junção Neuromuscular , Condicionamento Físico Animal , Ratos Sprague-Dawley , Animais , Masculino , Envelhecimento/metabolismo , Envelhecimento/fisiologia , Ratos , Músculo Esquelético/metabolismo , Condicionamento Físico Animal/fisiologia , Junção Neuromuscular/metabolismo , Junção Neuromuscular/fisiologia , Proteínas Musculares/metabolismo , Treinamento Resistido/métodos , Proteína Forkhead Box O1
3.
Signal Transduct Target Ther ; 9(1): 152, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38918390

RESUMO

CD8+ T cell immune responses are regulated by multi-layer networks, while the post-translational regulation remains largely unknown. Transmembrane ectodomain shedding is an important post-translational process orchestrating receptor expression and signal transduction through proteolytic cleavage of membrane proteins. Here, by targeting the sheddase A Disintegrin and Metalloprotease (ADAM)17, we defined a post-translational regulatory mechanism mediated by the ectodomain shedding in CD8+ T cells. Transcriptomic and proteomic analysis revealed the involvement of post-translational regulation in CD8+ T cells. T cell-specific deletion of ADAM17 led to a dramatic increase in effector CD8+ T cell differentiation and enhanced cytolytic effects to eliminate pathogens and tumors. Mechanistically, ADAM17 regulated CD8+ T cells through cleavage of membrane CD122. ADAM17 inhibition led to elevated CD122 expression and enhanced response to IL-2 and IL-15 stimulation in both mouse and human CD8+ T cells. Intriguingly, inhibition of ADAM17 in CD8+ T cells improved the efficacy of chimeric antigen receptor (CAR) T cells in solid tumors. Our findings reveal a critical post-translational regulation in CD8+ T cells, providing a potential therapeutic strategy of targeting ADAM17 for effective anti-tumor immunity.


Assuntos
Proteína ADAM17 , Linfócitos T CD8-Positivos , Diferenciação Celular , Proteína ADAM17/genética , Proteína ADAM17/imunologia , Linfócitos T CD8-Positivos/imunologia , Animais , Camundongos , Humanos , Diferenciação Celular/imunologia , Diferenciação Celular/genética , Diferenciação Celular/efeitos dos fármacos , Neoplasias/imunologia , Neoplasias/genética , Neoplasias/patologia
4.
Artigo em Inglês | MEDLINE | ID: mdl-38874037

RESUMO

The distortion of the cellular membrane transport pathway has a profound impact on cell dynamics and can drive serious physiological consequences during the process of cell sorting. SNX17 is a member of the Sorting Nexin (SNX) family and plays a crucial role in protein sorting and transport in the endocytic pathway. SNX17, SNX27, and SNX31 belong to the SNX-FERM subfamily and possess the FERM domain, which can assist in endocytic transport and lysosomal degradation. The binding partners of SNX27 have been discovered to number over 100, and SNX27 has been linked to the development of Alzheimer's disease progression, tumorigenesis, cancer progression, and metastasis. However, the role and potential mechanisms of SNX17 in human health and disease remain poorly understood, and the function of SNX17 has not been fully elucidated. In this review, we summarize the structure and basic functions of SNX protein, focusing on providing current evidence of the role and possible mechanism of SNX17 in human neurodegenerative diseases and cardiovascular diseases.

5.
Small ; 20(25): e2310342, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38221682

RESUMO

Ferroptosis is a new form of regulated cell death featuring iron-dependent lipid peroxides accumulation to kill tumor cells. A growing body of evidence has shown the potential of ferroptosis-based cancer therapy in eradicating refractory malignancies that are resistant to apoptosis-based conventional therapies. In recent years, studies have reported a number of ferroptosis inducers that can increase the vulnerability of tumor cells to ferroptosis by regulating ferroptosis-related signaling pathways. Encouraged by the rapid development of ferroptosis-driven cancer therapies, interdisciplinary fields that combine ferroptosis, pharmaceutical chemistry, and nanotechnology are focused. First, the prerequisites and metabolic pathways for ferroptosis are briefly introduced. Then, in detail emerging ferroptosis inducers designed to boost ferroptosis-induced tumor therapy, including metal complexes, metal-based nanoparticles, and metal-free nanoparticles are summarized. Subsequently, the application of synergistic strategies that combine ferroptosis with apoptosis and other regulated cell death for cancer therapy, with emphasis on the use of both cuproptosis and ferroptosis to induce redox dysregulation in tumor and intracellular bimetallic copper/iron metabolism disorders during tumor treatment is discussed. Finally, challenges associated with clinical translation and potential future directions for potentiating cancer ferroptosis therapies are highlighted.


Assuntos
Ferroptose , Nanomedicina , Neoplasias , Ferroptose/efeitos dos fármacos , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Nanomedicina/métodos , Animais , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/uso terapêutico
6.
Adv Mater ; 36(2): e2305361, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37699593

RESUMO

The cancer-immune cycle conceptualized the mechanisms of driving T cell responses to tumors, but w as limited by immunological ignorance elicited by tumor inherent immunoediting, which failed to initiate and maintain adaptive immunity. Targeting specific vulnerabilities of cell death patterns may provide unique opportunities to boost T cell antitumor immunological effects. Here an ultrasound nanomedicine-triggered tumor immuno-reediting therapeutic strategy using nano/genetically engineered extracellular vesicles, which can induce tumor highly immunogenic PANoptosis and iteratively start-up the energization of cancer innate immunity cycle by repeatedly liberating damage-associated molecular patterns, thereby priming sufficient antigen-specific T cells and shaping protective immune response through activating cGAS-STING signaling pathways, is reported. Aided by immune checkpoint blockade, the reprogramming of immune microenvironment further facilitated a prompt bridging of innate and adaptive immunity, and remarkably suppressed metastatic and rechallenged tumor growth. Thus, targeting PANoptotic cell death provides a catcher against immune escape and a positive-feedback immune activation gateway for overcoming immune resistance to intractable cancers.


Assuntos
Neoplasias , Humanos , Neoplasias/terapia , Linfócitos T , Imunidade Inata , Imunidade Adaptativa , Antígenos de Neoplasias , Microambiente Tumoral , Imunoterapia
7.
J Adv Res ; 55: 73-87, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36871615

RESUMO

INTRODUCTION: Both innate and adaptive immune system undergo evolution from low to high vertebrates. Due to the limitation of conventional approaches in identifying broader spectrum of immune cells and molecules from various vertebrates, it remains unclear how immune molecules evolve among vertebrates. OBJECTIVES: Here, we utilized carry out comparative transcriptome analysis in various immune cells across seven vertebrate species. METHODS: Single-cell RNA sequencing (scRNA-seq). RESULTS: We uncovered both conserved and species-specific profiling of gene expression in innate and adaptive immunity. Macrophages exhibited highly-diversified genes and developed sophisticated molecular signaling networks along with evolution, indicating effective and versatile functions in higher species. In contrast, B cells conservatively evolved with less differentially-expressed genes in analyzed species. Interestingly, T cells represented a dominant immune cell populations in all species and unique T cell populations were identified in zebrafish and pig. We also revealed compensatory TCR cascade components utilized by different species. Inter-species comparison of core gene programs demonstrated mouse species has the highest similarity in immune transcriptomes to human. CONCLUSIONS: Therefore, our comparative study reveals gene transcription characteristics across multiple vertebrate species during the evolution of immune system, providing insights for species-specific immunity as well as the translation of animal studies to human physiology and disease.


Assuntos
Imunidade Adaptativa , Imunidade Inata , Transcriptoma , Animais , Humanos , Camundongos , Imunidade Adaptativa/genética , Macrófagos , Suínos , Peixe-Zebra/genética , Imunidade Inata/genética
8.
BMC Anesthesiol ; 23(1): 343, 2023 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-37838663

RESUMO

BACKGROUND: Postoperative sore throat and sleep disturbance are prevalent among patients undergoing spinal surgery, and these conditions can substantially impact their postoperative satisfaction and quality of life. The present study aimed to examine the impact of ultrasound-guided stellate ganglion block (SGB) on the occurrence of postoperative sore throat (POST) and postoperative sleep disturbance (PSD) in patients who undergo lumbar spine surgery under general anesthesia. METHODS: Sixty patients were randomly assigned to either the experimental group (SGB group) or the control group (CG). Both groups received the same induction and maintenance drugs. However, the SGB group received a right SGB under ultrasound guidance 15 min before anesthesia induction, while the CG did not receive any block anesthesia intervention before anesthesia induction. We monitored the incidence and severity of POST at 1, 6, 24, and 48 h after surgery in both groups. Additionally, we evaluated the deep sleep quality score on the first, second, and fifth days after surgery in both groups. RESULTS: The incidence of POST at 1 h and 6 h after surgery was significantly lower in the SGB group (10.0% and 13.3%) than in the CG (43.3% and 36.7%) (P < 0.05). The postoperative sore throat scores of the SGB group (0.10 ± 0.31 and 0.17 ± 0.46) at 1 h and 6 h after surgery were lower than those of the CG (0.57 ± 0.73 and 0.50 ± 0.77) (P < 0.05). Moreover, the deep sleep quality score on the first, second, and fifth days after surgery were significantly higher in the CG (5.40 ± 3.37, 4.70 ± 3.19, 4.53 ± 3.44) than in the SGB group (3.87 ± 2.30, 3.13 ± 1.77, 3.03 ± 1.84) (P < 0.05). CONCLUSION: Ultrasound-guided SGB can reduce the incidence and severity of POST and improve PSD in patients undergoing lumbar spine surgery. TRIAL REGISTRATION: This study was registered on Chinese Clinical Trial Registry, (ChiCTR2200065279) on 01/11/2022.


Assuntos
Faringite , Gânglio Estrelado , Humanos , Qualidade de Vida , Dor , Faringite/epidemiologia , Faringite/etiologia , Faringite/prevenção & controle , Ultrassonografia de Intervenção , Sono
9.
BMC Anesthesiol ; 23(1): 326, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37749511

RESUMO

BACKGROUND: Emergency agitation is a common postoperative complication in patients under general anesthesia, which can lead to unpredictable damages such as shedding of drainage tube and bleeding from the wound. The purpose of the study is to investigate whether intraoperative infusion of Magnesium Sulfate reduces the incidence of emergency agitation (EA) in patients undergoing radical mastectomy, and to evaluate its safety and efficacy. METHODS: A total of 70 patients were randomly assigned to two groups: the Magnesium group (M group) and the control group (C group). After a routine intravenous anesthetic induction, patients in the M group received a 30 mg/kg bolus of intravenous magnesium during the first hour and then a continuous infusion of 10 mg/kg ×h until the end of the surgery, patients in the C group received 0.9% saline at the same volume and rate. The sedation-agitation scale (SAS) and the visual analogue scale were used to assess agitation and pain, respectively. RESULTS: Compared to the C group, the M group reduced the incidence of EA significantly (odds ratio 0.26, 95% confidence interval 0.09-0.71, P = 0.009). The postoperative pain score of the magnesium sulfate group(0(0,1)) was lower than that of the control group(2(0,3)) at T0 (P = 0.011). Additionally, the M group required a lower dosage of remifentanil during surgery compared to the C group(300.4 ± 84 versus 559.3 ± 184 µg, respectively, P<0.001). CONCLUSIONS: the intraoperative infusion of magnesium sulfate is a safe and effective method for reducing the incidence of emergency agitation in patients undergoing radical mastectomy. TRAIL REGISTRATION: The study was registered in Chictr.org with the identifier: ChiCTR2300070595 on 18/04/2023.


Assuntos
Neoplasias da Mama , Sulfato de Magnésio , Humanos , Feminino , Magnésio , Mastectomia/efeitos adversos , Anestesia Geral/efeitos adversos , Dor Pós-Operatória/epidemiologia , Mastectomia Radical/efeitos adversos , Método Duplo-Cego
10.
Medicine (Baltimore) ; 102(30): e34500, 2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37505142

RESUMO

Sarcopenia is an age-related degenerative disease associated with adverse outcomes such as falls, functional decline, weakness, and mortality. Exploring the dynamic evolutionary path and patterns of sarcopenia research topics within a temporal framework from the perspective of strategic coordinate maps and data flow can help identify the development rules of sarcopenia themes. After searching, a total of 16,326 articles were obtained. There are few early research topics, but the development maturity of the topics is high; the number of late research topics continues to increase, showing a trend of diversified development. The differentiation and fusion of the theme evolution path are obvious, and the theme inheritance index is high. The development trend of this research field is promising. The mature and stable professional topics such as "RESISTANCE EXERCISE" and "SURVIVAL" that appeared in the late stage belong to the core topics, while newly emerging topics like "FRACTURES" and "PROTEIN" belong to the marginal topics, indicating that the research on muscle and bone metabolism in the field of sarcopenia has yet to be further in-depth, and the "CANCER" topic is a highly promising research topic with strong development potential.


Assuntos
Fraturas Ósseas , Sarcopenia , Humanos , Bibliometria , Exercício Físico , Músculos
11.
Signal Transduct Target Ther ; 8(1): 235, 2023 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-37332039

RESUMO

T cells are crucial for immune functions to maintain health and prevent disease. T cell development occurs in a stepwise process in the thymus and mainly generates CD4+ and CD8+ T cell subsets. Upon antigen stimulation, naïve T cells differentiate into CD4+ helper and CD8+ cytotoxic effector and memory cells, mediating direct killing, diverse immune regulatory function, and long-term protection. In response to acute and chronic infections and tumors, T cells adopt distinct differentiation trajectories and develop into a range of heterogeneous populations with various phenotype, differentiation potential, and functionality under precise and elaborate regulations of transcriptional and epigenetic programs. Abnormal T-cell immunity can initiate and promote the pathogenesis of autoimmune diseases. In this review, we summarize the current understanding of T cell development, CD4+ and CD8+ T cell classification, and differentiation in physiological settings. We further elaborate the heterogeneity, differentiation, functionality, and regulation network of CD4+ and CD8+ T cells in infectious disease, chronic infection and tumor, and autoimmune disease, highlighting the exhausted CD8+ T cell differentiation trajectory, CD4+ T cell helper function, T cell contributions to immunotherapy and autoimmune pathogenesis. We also discuss the development and function of γδ T cells in tissue surveillance, infection, and tumor immunity. Finally, we summarized current T-cell-based immunotherapies in both cancer and autoimmune diseases, with an emphasis on their clinical applications. A better understanding of T cell immunity provides insight into developing novel prophylactic and therapeutic strategies in human diseases.


Assuntos
Doenças Autoimunes , Linfócitos T CD8-Positivos , Humanos , Linfócitos T CD4-Positivos , Subpopulações de Linfócitos T , Doenças Autoimunes/genética , Timo
12.
Carbohydr Polym ; 310: 120721, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36925247

RESUMO

Nowadays, the photothermal therapy (PTT) has received widespread attention and research by rapidly killing tumors with local high temperature. However, due to the irregular edges of tumor and the blurred boundary between normal and necrotic tissues, the desirable treatment cannot be achieved by the single PTT, and excessive heat will cause serious inflammation in local tissues. Herein, an injectable composite hydrogel is prepared by the oxidized hyaluronic acid (OHA) and hydroxypropyl chitosan (HPCS) via the imine bonds, which is employed as the delivery substrate for functional substances. In the gel medium, the mesoporous polydopamine (MPDA) nanoparticles are incorporated as the high efficiency photothermal agent and a reservoir of DOX, which can achieve the good photothermal conversion performance and pulsed drug release. Besides, the addition of the curcumin-cyclodextrin host-guest inclusion complex (CUR@NH2-CD) in the composite hydrogel could reduce the inflammation caused by PTT. The composite hydrogel shows favorable the Hepa1-6 tumor inhibition in vivo by virtue of the comprehensive effect of the admired photothermal efficacy of MPDA, chemotherapy of DOX and anti-inflammatory of CUR. It can be predicted that the composite hydrogel has a broad prospect in the field of comprehensive therapy for tumor.


Assuntos
Quitosana , Nanopartículas , Neoplasias , Humanos , Quitosana/uso terapêutico , Terapia Fototérmica , Ácido Hialurônico/química , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Nanogéis/uso terapêutico , Fototerapia/métodos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Nanopartículas/química , Inflamação/tratamento farmacológico , Anti-Inflamatórios/uso terapêutico , Hidrogéis/química
13.
ACS Appl Mater Interfaces ; 15(8): 10477-10491, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36790347

RESUMO

Imaging-guided percutaneous microwave thermotherapy has been regarded as an important alternative nonsurgical therapeutic strategy for hepatocellular carcinoma (HCC) that provides excellent local tumor control and favorable survival benefit. However, providing a high-resolution, real-time, and noninvasive imaging technique for intraoperative guidance and controlling postoperative residual tumor recurrence are urgent needs for the clinical setting. In this study, a cisplatin (CDDP)-loaded nanocapsule (NPs@CDDP) with microwave responsive property was prepared to simultaneously serve as a contrast agent of emerging thermoacoustic imaging and a sensitizing agent of microwave thermo-chemotherapy. Accompanying the enzymolysis in the tumor microenvironment, the NPs@CDDP responsively release l-arginine (l-Arg) and CDDP. l-Arg with excellent microwave-absorbing property allowed it to serve as a thermoacoustic imaging contrast agent for accurately delineating the tumor and remarkably increasing tumor temperature under ultralow power microwave irradiation. Apart from the chemotherapeutic effect, CDDP elevated the intracellular H2O2 level through cascade reactions and further accelerated the continuous transformation of l-Arg to nitric oxide (NO), which endowed the NPs@CDDP with NO-generation capability. Notably, the high concentration of intracellular NO was proved to aggravate lipid peroxidation and greatly improved the efficacy of microwave thermo-chemotherapy. Thereby, NPs@CDDP was expected to serve as a theranostic agent integrating the functions of tumor microenvironment-responsive drug delivery system, contrast agent of thermoacoustic imaging, thermal sensitizing agent, and NO nanogenerator, which was promising to provide a potential imaging-guided therapeutic strategy for HCC.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Óxido Nítrico/uso terapêutico , Neoplasias Hepáticas/tratamento farmacológico , Micro-Ondas , Meios de Contraste/uso terapêutico , Peróxido de Hidrogênio , Cisplatino/uso terapêutico , Antineoplásicos/uso terapêutico , Microambiente Tumoral
14.
Adv Healthc Mater ; 12(6): e2202663, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36653312

RESUMO

Ferroptosis, characterized by the accumulation of reactive oxygen species and lipid peroxides, has emerged as an attractive strategy to reverse drug resistance. Of particular interest is the ferroptosis-apoptosis combination therapy for cancer treatment. Herein, a nanoplatform is reported for effective co-delivery of the anticancer drug sorafenib (S) and the ferroptosis inducer hemin (H), toward synergistic ferroptosis-apoptosis therapy of advanced hepatocellular carcinoma (HCC) as a proof-of-concept study. Liposome is an excellent delivery system; however, it is not sufficiently responsive to the acidic tumor microenvironment (TME) for tumor-targeted drug delivery. The pH-sensitive vesicles are therefore developed (SH-AD-L) by incorporating amphiphilic dendrimers (AD) into liposomes for controlled and pH-stimulated release of sorafenib and hemin in the acidic TME, thanks to the protonation of numerous amine functionalities in AD. Importantly, SH-AD-L not only blocked glutathione synthesis to disrupt the antioxidant system, but also increased intracellular Fe2+ and ·OH concentrations to amplify oxidative stress, both of which contribute to enhanced ferroptosis. Remarkably, high levels of ·OH also augmented sorafenib-mediated apoptosis in tumor cells. This study demonstrates the efficacy of ferroptosis-apoptosis combination therapy, as well as the promise of the AD-doped TME-responsive vesicles for drug delivery in combination therapy to treat advanced HCC.


Assuntos
Carcinoma Hepatocelular , Dendrímeros , Ferroptose , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico , Dendrímeros/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Hemina/farmacologia , Hemina/uso terapêutico , Apoptose , Lipossomos/farmacologia , Polímeros/farmacologia , Concentração de Íons de Hidrogênio , Linhagem Celular Tumoral , Microambiente Tumoral
15.
Comput Math Methods Med ; 2022: 2791464, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36158127

RESUMO

Background: Peripherally inserted central catheter (PICC), as one of the important intravenous routes for the rescue and treatment of critically ill patients, has been widely used in the fluid resuscitation of critically ill patients in intensive care. In particular, PICC can be widely used in the treatment of cancer patients. With the wide application of peripheral central venous catheterization, the clinical findings of bloodstream infection complications caused by PICC have gradually attracted the attention of doctors and patients. Aims: To investigate the effect of specialized placement and PICC placement care on patients with lung cancer who underwent PICC puncture. Patients were selected and divided into a comparison group and an observation group of 40 patients each according to the randomized residual grouping method. In the comparison group, routine PICC placement and catheter maintenance were performed, while the observation group was provided with specialized placement and PICC placement care. The differences in immune and tumor marker levels and nursing compliance between the two groups were observed and compared before and after nursing care. Results: There was no significant difference in the comparison of tumor marker levels between the two groups of patients before care, while the levels of CYFRA21-1, CA125, and VGEF in the observation group were significantly lower than those in the comparison group after care, and this difference was statistically significant (P < 0.05). There was no statistically significant difference in the comparison of immune levels between the two groups before care (P > 0.05), while the comparison of CD4+, CD3+, and CD4+/CD8+ after care was significantly different and higher in the observation group than in the comparison group, and the comparison was statistically significant (P < 0.05). The compliance rate of 93.8% in the observation group was significantly higher than that of 77.9% in the comparison group, and this difference was statistically significant for comparison (P < 0.05). Conclusion: PICC placement care is more effective in patients with lung cancer and performing PICC puncture, significantly improves patients' immune and tumor marker levels, improves patients' negative emotions, reduces disease uncertainty, and improves nursing compliance.


Assuntos
Infecções Relacionadas a Cateter , Cateterismo Periférico , Cateteres Venosos Centrais , Neoplasias Pulmonares , Sepse , Antígenos de Neoplasias , Biomarcadores Tumorais , Infecções Relacionadas a Cateter/etiologia , Cateterismo Periférico/efeitos adversos , Cateterismo Periférico/métodos , Catéteres , Cateteres Venosos Centrais/efeitos adversos , Estado Terminal , Humanos , Queratina-19 , Neoplasias Pulmonares/complicações , Estudos Retrospectivos , Sepse/complicações
16.
Adv Sci (Weinh) ; 9(32): e2204067, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36073839

RESUMO

Cancer photo-immunotherapy (CPIT) as an ideal strategy can rapidly release hostile signals by appropriate dosage of focal laser irradiation to unmask primary tumor immunogenicity and can activate adaptive immunity to control distant metastases. However, many factors, including disordered immunometabolism, poor penetration of photothermal agents and immuno-regulators, inadequate laser penetration into the deep tumor region, restrict the therapeutic outcomes of CPIT. Here, a second near-infrared window (NIR-II) photo-immunometabolic cancer therapy (PICT) by a programmed raspberry-structured nanoadjuvant (PRNMT ) is presented that can potentiates efficient immunogenic cell death (ICD) in deep tumor tissue and alleviates immunometabolic disorder. The PRNMT is architected through self-assembly of indoleamine 2,3-dioxygenase 1 (IDO-1) inhibitor modified small-sized CuS nanoparticles (CuS5 ) and tumor microenvironment (TME) responsive cationized polymeric matrix. The TME can trigger the splitting and surface cationization of PRNMT into small cationized CuS5 that feature high transcytosis potential and TME immunometabolic regulation. Upon NIR-II irradiation, CuS5 induce homogeneous ICD and release immunometabolic regulator in deep tumor tissues, which ameliorates IDO-1 mediated immunometabolic disorder and further suppresses regulatory T cells infiltration. PRNMT mediated PICT effectively delays the primary murine mammary carcinoma 4T1 tumor growth and inhibits the lethal pulmonary metastasis in combination with programmed cell death protein 1 (PD1) blockade.


Assuntos
Neoplasias , Camundongos , Animais , Neoplasias/terapia , Cobre , Imunoterapia , Indolamina-Pirrol 2,3,-Dioxigenase , Transcitose , Microambiente Tumoral
17.
Sci Adv ; 8(6): eabk2691, 2022 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-35138904

RESUMO

Upon virus infection, CD8+ T cell accumulation is tightly controlled by simultaneous proliferation and apoptosis. However, it remains unclear how TCR signal coordinates these events to achieve expansion and effector cell differentiation. We found that T cell-specific deletion of nuclear helicase Dhx9 led to impaired CD8+ T cell survival, effector differentiation, and viral clearance. Mechanistically, Dhx9 acts as the key regulator to ensure LCK- and CD3ε-mediated ZAP70 phosphorylation and ERK activation to protect CD8+ T cells from apoptosis before proliferative burst. Dhx9 directly regulates Id2 transcription to control effector CD8+ T cell differentiation. The DSRM and OB_Fold domains are required for LCK binding and Id2 transcription, respectively. Dhx9 expression is predominantly increased in effector CD8+ T cells of COVID-19 patients. Therefore, we revealed a previously unknown regulatory mechanism that Dhx9 protects activated CD8+ T cells from apoptosis and ensures effector differentiation to promote antiviral immunity independent of nuclear sensor function.


Assuntos
Antivirais/farmacologia , Infecções por Arenaviridae/prevenção & controle , Linfócitos T CD8-Positivos/imunologia , COVID-19/prevenção & controle , RNA Helicases DEAD-box/metabolismo , Imunidade Inata , Proteínas de Neoplasias/metabolismo , Animais , Infecções por Arenaviridae/imunologia , Infecções por Arenaviridae/metabolismo , Infecções por Arenaviridae/patologia , COVID-19/imunologia , COVID-19/metabolismo , COVID-19/patologia , Diferenciação Celular , RNA Helicases DEAD-box/genética , Humanos , Ativação Linfocitária , Vírus da Coriomeningite Linfocítica/fisiologia , Camundongos , Proteínas de Neoplasias/genética , SARS-CoV-2/fisiologia , Replicação Viral
18.
Elife ; 112022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35113015

RESUMO

T-cell development in the thymus undergoes the process of differentiation, selective proliferation, and survival from CD4-CD8- double negative (DN) stage to CD4+CD8+ double positive (DP) stage prior to the formation of CD4+ helper and CD8+ cytolytic T cells ready for circulation. Each developmental stage is tightly regulated by sequentially operating molecular networks, of which only limited numbers of transcription regulators have been deciphered. Here, we identified Zfp335 transcription factor as a new player in the regulatory network controlling thymocyte development in mice. We demonstrate that Zfp335 intrinsically controls DN to DP transition, as T-cell-specific deficiency in Zfp335 leads to a substantial accumulation of DN3 along with reduction of DP, CD4+, and CD8+ thymocytes. This developmental blockade at DN stage results from the impaired intracellular TCRß (iTCRß) expression as well as increased susceptibility to apoptosis in thymocytes. Transcriptomic and ChIP-seq analyses revealed a direct regulation of transcription factors Bcl6 and Rorc by Zfp335. Importantly, enhanced expression of TCRß and Bcl6/Rorc restores the developmental defect during DN3 to DN4 transition and improves thymocytes survival, respectively. These findings identify a critical role of Zfp335 in controlling T-cell development by maintaining iTCRß expression-mediated ß-selection and independently activating cell survival signaling.


Assuntos
Sobrevivência Celular , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Linfócitos T/metabolismo , Fatores de Transcrição/metabolismo , Animais , Antígenos CD4/metabolismo , Antígenos CD8/metabolismo , Diferenciação Celular , Camundongos , Proteínas Proto-Oncogênicas c-bcl-6/metabolismo , Timócitos/metabolismo , Timo/metabolismo , Dedos de Zinco
19.
J Immunother Cancer ; 9(10)2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34642245

RESUMO

BACKGROUND: Aging has long been thought to be a major risk factor for various types of cancers. However, accumulating evidence indicates increased resistance of old animals to tumor growth. An in-depth understanding of how old individuals defend against tumor invasion requires further investigations. METHODS: We revealed age-associated alterations in tumor-infiltrating immune cells between young and old mice using single-cell RNA and coupled T cell receptor (TCR) sequencing analysis. Multiple bioinformatics methods were adopted to analyze the characteristics of the transcriptome between two groups. To explore the impacts of young and old CD8+ T cells on tumor growth, mice were treated with anti-CD8 antibody every 3 days starting 7 days after tumor inoculation. Flow cytometry was used to validate the differences indicated by sequencing analysis between young and old mice. RESULTS: We found a higher proportion of cytotoxic CD8+ T cells, naturally occurring Tregs, conventional dendritic cell (DC), and M1-like macrophages in tumors of old mice compared with a higher percentage of exhausted CD8+ T cells, induced Tregs, plasmacytoid DC, and M2-like macrophages in young mice. Importantly, TCR diversity analysis showed that top 10 TCR clones consisted primarily of exhausted CD8+ T cells in young mice whereas top clones were predominantly cytotoxic CD8+ T cells in old mice. Old mice had more CD8+ T cells with a 'progenitor' and less 'terminally' exhausted phenotypes than young mice. Consistently, trajectory inference demonstrated that CD8+ T cells preferentially differentiated into cytotoxic cells in old mice in contrast to exhausted cells in young mice. Importantly, elimination of CD8+ T cells in old mice during tumor growth significantly accelerated tumor development. Moreover, senescent features were demonstrated in exhausted but not cytotoxic CD8+ T cells regardless of young and old mice. CONCLUSIONS: Our data revealed that a significantly higher proportion of effector immune cells in old mice defends against tumor progression, providing insights into understanding the altered kinetics of cancer development and the differential response to immunotherapeutic modulation in elderly patients.


Assuntos
Imunoterapia/métodos , Neoplasias/imunologia , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Envelhecimento , Animais , Feminino , Camundongos , Microambiente Tumoral
20.
Cancers (Basel) ; 13(15)2021 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-34359637

RESUMO

RNA-binding proteins (RBPs) are important transcriptomic regulators and may be important in tumorigenesis. Here, we sought to investigate the clinical impact of RBPs for patients with Ewing sarcoma (ES). ES transcriptome signatures were characterized from four previously published cohorts and grouped into new training and validation cohorts. A total of three distinct subtypes were identified and compared for differences in patient prognosis and RBP signatures. Next, univariate Cox and Lasso regression models were used to identify hub prognosis-related RBPs and construct a prognostic risk model, and prediction capacity was assessed through time-dependent receiver operating characteristics (ROCs), Kaplan-Meier curves, and nomograms. Across the three RBP subtypes, 29 significant prognostic-associated RBP genes were identified, of which 10 were used to build and validate an RBP-associated prognostic risk model (RPRM) that had a stable predictive value and could be considered valuable for clinical risk-stratification of ES. A comparison with immunohistochemistry validation showed a significant association between overall survival and NSUN7 immunoreactivity, which was an independent favorable prognostic marker. The association of RBP signatures with ES clinical prognosis provides a strong rationale for further investigation into RBPs molecular mechanisms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA