Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Cancer Cell ; 42(1): 135-156.e17, 2024 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-38101410

RESUMO

Comprehensive molecular analyses of metastatic hepatocellular carcinoma (HCC) are lacking. Here, we generate multi-omic profiling of 257 primary and 176 metastatic regions from 182 HCC patients. Primary tumors rich in hypoxia signatures facilitated polyclonal dissemination. Genomic divergence between primary and metastatic HCC is high, and early dissemination is prevalent. The remarkable neoantigen intratumor heterogeneity observed in metastases is associated with decreased T cell reactivity, resulting from disruptions to neoantigen presentation. We identify somatic copy number alterations as highly selected events driving metastasis. Subclones without Wnt mutations show a stronger selective advantage for metastasis than those with Wnt mutations and are characterized by a microenvironment rich in activated fibroblasts favoring a pro-metastatic phenotype. Finally, metastases without Wnt mutations exhibit higher enrichment of immunosuppressive B cells that mediate terminal exhaustion of CD8+ T cells via HLA-E:CD94-NKG2A checkpoint axis. Collectively, our results provide a multi-dimensional dissection of the complex evolutionary process of metastasis.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Linfócitos T CD8-Positivos/patologia , Multiômica , Mutação , Microambiente Tumoral/genética
2.
J Med Primatol ; 52(6): 384-391, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37807223

RESUMO

OBJECTIVE: Rhesus monkeys are increasingly used in biomedical research, which makes their hematological and biochemical parameters increasingly important in preclinical research. Since age and sex can influence blood parameters, establishing reference intervals for such parameters based on age and sex becomes along with identifying the effect of age and sex on those parameters. METHODS: A total of 1385 healthy Chinese rhesus monkeys (548 males and 837 females) anesthetized with ketamine were selected and segregated by age (six groups) and sex. A total of 21 hematological and 26 biochemical parameters were measured, and the effects of age and sex were analyzed. RESULTS: We established baseline indices for hematological and biochemical parameters based on age and sex, separately, and observed significant impacts of age, sex, and age-sex interactions on blood parameters. Among different age groups, significant differences were found in WBC, NEUT%, LYM%, EO%, LYM#, EO#, MCV, RDW-CV, PLT, MPV, PDW, PCT, TP, Alb, GLB, A/G, ALT, AST, ALP, TBIL, GGT, BUN, Cre, GLU, CK, TRIG, LDL, HCY, IL-6 FOL, Vit B12, VIT D-T, PTH, and AMH. Additionally, significant differences were observed in RBC, HGB, HCT, MPV, Alb, BUN, Cre, GLU, CHOL, TRIG, HDL, LDL, HCY, and VIT D-T between the two sexes. An age-sex interaction exerted a significant effect on WBC, NEUT#, MCV, MCHC, PDW, GLB, ALP, Cre, CHOL, TRIG, HDL, LDL, HCY, IL-6, Vit B12, VIT D-T. However, neither age, sex, and age-sex interactions exerted significant effects on MO%, MOMO#, MCH, RDW-SD, CRP, and CT. CONCLUSION: Our study investigated the blood parameters of rhesus monkeys to provide a reference basis for rhesus monkey-related scientific experimental research.


Assuntos
Ketamina , Masculino , Feminino , Animais , Macaca mulatta , Ketamina/farmacologia , Interleucina-6
3.
Clin Nucl Med ; 48(5): 409-410, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36927765

RESUMO

ABSTRACT: A 50-year-old woman underwent 18 F-FDG PET/CT to evaluate possible abdominal malignancy, which was revealed by CT. The images showed a large cystic-solid lesion with peripherally increased FDG activity in the left mid-abdomen. Histopathology of the excised lesion confirmed a jejunal cavernous hemangioma. We reported a rare case of jejunal cavernous hemangioma with FDG accumulation on PET/CT, mimicking malignancy.


Assuntos
Neoplasias Abdominais , Hemangioma Cavernoso , Feminino , Humanos , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Fluordesoxiglucose F18 , Tomografia por Emissão de Pósitrons , Hemangioma Cavernoso/diagnóstico por imagem , Hemangioma Cavernoso/patologia
4.
J Ethnopharmacol ; 299: 115652, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36038092

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Dahuang Mudan decoction (DMD) is a classic prescription for treating intestinal carbuncle from Zhang Zhongjing's "Essentials of the Golden Chamber" in the Han Dynasty. Recent studies also prove that DMD has a therapeutic effect on ulcerative colitis (UC), but its mechanism is still unclear. AIM OF STUDY: In this study, we aim to assess the therapeutic effect of DMD on DSS-induced chronic colitis in mice and deeply expound its underlying regulative mechanism. MATERIALS AND METHODS: The efficacy of DMD on mice with 2% DSS-induced chronic colitis was examined by changes in mouse body weight, DAI score, colon length changes, peripheral blood white blood cells (WBC) and red blood cells (RBC) counts, and hemoglobin (HGB) content, using mesalazine as a positive control. A small animal imaging system observed the FITC-Dextran fluorescence distribution in mice, and the contents of IL-22 and IL-17A in colon tissue homogenate supernatant and LPS in peripheral blood were detected by ELISA. Fluorescence in situ molecular hybridization and bacterial culture were used to investigate bacterial infiltration in intestinal mucosa and bacterial translocation in mesenteric lymph nodes and spleen. Mice immune function was further evaluated by analyzing the changes in spleen index, thymus index, and the ratio of peripheral blood granulocytes, monocytes, and lymphocytes. Meanwhile, the proportion of NCR+ group 3 innate lymphoid cells (ILC3), NCR-ILC3, and IL-22+ILC3 in colonic lamina propria lymphocytes of mice was detected by flow cytometry. The contents of effectors IL-22, IL-17A, and GM-CSF were detected by RT-PCR. We use cell scratching to determine the effect of DMD conditioned medium on the migration of Caco-2 cells by establishing an in vitro model of MNK-3 conditioned medium (CM) intervening Caco-2 cells. RT-PCR and WB detect the expression of tight junction ZO-1, Occludin, and Claudin-1. RESULTS: DMD restored the body weight, colon length, peripheral blood RBC numbers, and HGB content of chronic colitis mice and reduced peripheral blood WBC and colon inflammatory cell infiltration. Moreover, DMD decreased LPS content in serum, bacterial infiltration of colonic mucosa, and bacterial translocation in spleen and mesenteric lymph nodes. Simultaneously, DMD intensified the expression of ZO-1, Occludin, and Claudin-1, the ratio of NCR+ILC3 and IL-22+ILC3, and decreased the proportion of NCR-ILC3. In vitro studies also confirmed that the conditioned medium of DMD promoted the migration of Caco-2 cells and the expression of tight junction proteins. CONCLUSION: Our results confirm that DMD improves inflammation and restores intestinal epithelial function in mice with chronic colitis, and the mechanism may be related to regulating ILC3 function.


Assuntos
Colite Ulcerativa , Colite , Animais , Peso Corporal , Células CACO-2 , Claudina-1/metabolismo , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/patologia , Meios de Cultivo Condicionados/efeitos adversos , Meios de Cultivo Condicionados/metabolismo , Sulfato de Dextrana , Modelos Animais de Doenças , Fator Estimulador de Colônias de Granulócitos e Macrófagos , Humanos , Imunidade Inata , Interleucina-17/metabolismo , Mucosa Intestinal/metabolismo , Lipopolissacarídeos/farmacologia , Linfócitos/metabolismo , Mesalamina/efeitos adversos , Camundongos , Camundongos Endogâmicos C57BL , Ocludina/metabolismo , Proteínas de Junções Íntimas/metabolismo
5.
ACS Nano ; 16(3): 4014-4027, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35225594

RESUMO

T lymphocyte infiltration with immunotherapy potentially suppresses most devastating brain tumors. However, local immune privilege and tumor heterogeneity usually limit the penetration of immune cells and therapeutic agents into brain tumors, leading to tumor recurrence after treatment. Here, a rabies virus glycoprotein (RVG)-camouflaged gold yarnball (RVG@GY) that can boost the targeting efficiency at a brain tumor via dual hierarchy- and RVG-mediated spinal cord transportation, facilitating the decrease of tumor heterogeneity for T cell infiltration, is developed. Upon magnetoelectric irradiation, the electron current generated on the GYs activates the electrolytic penetration of palbociclib-loaded dendrimer (Den[Pb]) deep into tumors. In addition, the high-density GYs at brain tumors also induces the disruption of cell-cell interactions and T cell infiltration. The integration of the electrolytic effects and T cell infiltration promoted by drug-loaded RVG@GYs deep in the brain tumor elicits sufficient T cell numbers and effectively prolongs the survival rate of mice with orthotopic brain tumors.


Assuntos
Neoplasias Encefálicas , Vírus da Raiva , Animais , Neoplasias Encefálicas/tratamento farmacológico , Glicoproteínas , Ouro/uso terapêutico , Camundongos , Linfócitos T/patologia
6.
Pharmaceutics ; 13(10)2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34684020

RESUMO

Histone deacetylase (HDAC) inhibitors have emerged as a new class of antitumor agent for various types of tumors. MPT0B291, a novel selective inhibitor of HDAC6, demonstrated significant antiproliferative activity in various human cancer cell types. However, MPT0B291 has very low water solubility, which limits its clinical use for cancer therapy. In the current study, MPT0B291 was encapsulated in human serum albumin (HSA), and its anticancer activities were investigated. Nanoparticles (NPs) were prepared using two-stage emulsification resulting in 100~200-nm NPs with a fine size distribution (polydispersity index of <0.3). The in vitro drug release profiles of MPT0B291-loaded HSA NPs presented sustained-release properties. The cytotoxic effect on MIA PaCa-2 human pancreatic carcinoma cells was found to be similar to MPT0B291-loaded HSA NPs and the free-drug group. The albumin-based formulation provided a higher maximum tolerated dose than that of a drug solution with reduced toxicity toward normal cells. Furthermore, in vivo pharmacokinetic studies demonstrated an effective increase (5~8-fold) in the bioavailability of NPs containing MPT0B291 loaded in HSA compared to the free-drug solution with an extended circulation time (t1/2) leading to significantly enhanced efficacy of anticancer treatment.

7.
J Hematol Oncol ; 14(1): 122, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34372909

RESUMO

BACKGROUND: During acute myeloid leukemia (AML) growth, the bone marrow (BM) niche acquires significant vascular changes that can be offset by therapeutic blast cytoreduction. The molecular mechanisms of this vascular plasticity remain to be fully elucidated. Herein, we report on the changes that occur in the vascular compartment of the FLT3-ITD+ AML BM niche pre and post treatment and their impact on leukemic stem cells (LSCs). METHODS: BM vasculature was evaluated in FLT3-ITD+ AML models (MllPTD/WT/Flt3ITD/ITD mouse and patient-derived xenograft) by 3D confocal imaging of long bones, calvarium vascular permeability assays, and flow cytometry analysis. Cytokine levels were measured by Luminex assay and miR-126 levels evaluated by Q-RT-PCR and miRNA staining. Wild-type (wt) and MllPTD/WT/Flt3ITD/ITD mice with endothelial cell (EC) miR-126 knockout or overexpression served as controls. The impact of treatment-induced BM vascular changes on LSC activity was evaluated by secondary transplantation of BM cells after administration of tyrosine kinase inhibitors (TKIs) to MllPTD/WT/Flt3ITD/ITD mice with/without either EC miR-126 KO or co-treatment with tumor necrosis factor alpha (TNFα) or anti-miR-126 miRisten. RESULTS: In the normal BM niche, CD31+Sca-1high ECs lining arterioles have miR-126 levels higher than CD31+Sca-1low ECs lining sinusoids. We noted that during FLT3-ITD+ AML growth, the BM niche lost arterioles and gained sinusoids. These changes were mediated by TNFα, a cytokine produced by AML blasts, which induced EC miR-126 downregulation and caused depletion of CD31+Sca-1high ECs and gain in CD31+Sca-1low ECs. Loss of miR-126high ECs led to a decreased EC miR-126 supply to LSCs, which then entered the cell cycle and promoted leukemia growth. Accordingly, antileukemic treatment with TKI decreased the BM blast-produced TNFα and increased miR-126high ECs and the EC miR-126 supply to LSCs. High miR-126 levels safeguarded LSCs, as shown by more severe disease in secondary transplanted mice. Conversely, EC miR-126 deprivation via genetic or pharmacological EC miR-126 knock-down prevented treatment-induced BM miR-126high EC expansion and in turn LSC protection. CONCLUSIONS: Treatment-induced CD31+Sca-1high EC re-vascularization of the leukemic BM niche may represent a LSC extrinsic mechanism of treatment resistance that can be overcome with therapeutic EC miR-126 deprivation.


Assuntos
Medula Óssea/patologia , Regulação Leucêmica da Expressão Gênica , Leucemia Mieloide Aguda/genética , MicroRNAs/genética , Células-Tronco Neoplásicas/patologia , Animais , Medula Óssea/irrigação sanguínea , Humanos , Leucemia Mieloide Aguda/patologia , Leucemia Mieloide Aguda/terapia , Camundongos , Camundongos Endogâmicos C57BL , Regulação para Cima , Tirosina Quinase 3 Semelhante a fms/genética
8.
Leukemia ; 35(8): 2285-2298, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33589748

RESUMO

We report here on a novel pro-leukemogenic role of FMS-like tyrosine kinase 3-internal tandem duplication (FLT3-ITD) that interferes with microRNAs (miRNAs) biogenesis in acute myeloid leukemia (AML) blasts. We showed that FLT3-ITD interferes with the canonical biogenesis of intron-hosted miRNAs such as miR-126, by phosphorylating SPRED1 protein and inhibiting the "gatekeeper" Exportin 5 (XPO5)/RAN-GTP complex that regulates the nucleus-to-cytoplasm transport of pre-miRNAs for completion of maturation into mature miRNAs. Of note, despite the blockage of "canonical" miRNA biogenesis, miR-155 remains upregulated in FLT3-ITD+ AML blasts, suggesting activation of alternative mechanisms of miRNA biogenesis that circumvent the XPO5/RAN-GTP blockage. MiR-155, a BIC-155 long noncoding (lnc) RNA-hosted oncogenic miRNA, has previously been implicated in FLT3-ITD+ AML blast hyperproliferation. We showed that FLT3-ITD upregulates miR-155 by inhibiting DDX3X, a protein implicated in the splicing of lncRNAs, via p-AKT. Inhibition of DDX3X increases unspliced BIC-155 that is then shuttled by NXF1 from the nucleus to the cytoplasm, where it is processed into mature miR-155 by cytoplasmic DROSHA, thereby bypassing the XPO5/RAN-GTP blockage via "non-canonical" mechanisms of miRNA biogenesis.


Assuntos
Citoplasma/metabolismo , Leucemia Mieloide Aguda/patologia , MicroRNAs/biossíntese , Ribonuclease III/metabolismo , Sequências de Repetição em Tandem , Tirosina Quinase 3 Semelhante a fms/metabolismo , Animais , Modelos Animais de Doenças , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Camundongos , Ribonuclease III/genética , Células Tumorais Cultivadas , Tirosina Quinase 3 Semelhante a fms/genética
9.
Mol Ther ; 29(3): 1214-1225, 2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33248246

RESUMO

Despite recent advances, non-Hodgkin's B cell lymphoma patients often relapse or remain refractory to therapy. Therapeutic resistance is often associated with survival signaling via nuclear factor κB (NF-κB) transcription factor, an attractive but undruggable molecular target. In this study, we describe a bipartite inhibitor comprising a NF-κB-specific decoy DNA tethered to a CpG oligodeoxynucleotide (ODN) targeting Toll-like receptor-9-expressing B cell lymphoma cells. The Bc-NFκBdODN showed efficient uptake by human diffuse large B cell (U2932, OCI-Ly3), Burkitt (RaJi), and mantle cell (Jeko1) lymphomas, respectively. We confirmed that Bc-NFκBdODN inhibited NF-κB nuclear translocation and DNA binding, resulting in CCND2 and MYC downregulation. Bc-NFκBdODN enhanced radiosensitivity of lymphoma cells in vitro. In xenotransplanted human lymphoma, local injections of Bc-NFκBdODN reduced NF-κB activity in whole tumors. When combined with a local 3-Gy dose of radiation, Bc-NFκBdODN effectively arrested OCI-Ly3 lymphoma progression. In immunocompetent mice, intratumoral injections of Bc-NFκBdODN suppressed growth of directly treated and distant A20 lymphomas, as a result of systemic CD8 T cell-dependent immune responses. Finally, systemic administration of Bc-NFκBdODN to mice bearing disseminated A20 lymphoma induced complete regression and extended survival of most of the treated mice. Our results underscore clinical relevance of this strategy as monotherapy and in support of radiation therapy to benefit patients with resistant or relapsed B cell lymphoma.


Assuntos
Linfoma de Células B/terapia , NF-kappa B/antagonistas & inibidores , Oligodesoxirribonucleotídeos/administração & dosagem , Oligodesoxirribonucleotídeos/antagonistas & inibidores , Tolerância a Radiação/efeitos dos fármacos , Receptor Toll-Like 9/antagonistas & inibidores , Animais , Apoptose , Proliferação de Células , Humanos , Linfoma de Células B/genética , Linfoma de Células B/imunologia , Linfoma de Células B/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos NOD , Camundongos SCID , Oligodesoxirribonucleotídeos/genética , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
10.
J Clin Invest ; 131(2)2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33232304

RESUMO

The tumor microenvironment affects the outcome of radiotherapy against head and neck squamous cell carcinoma (HNSCC). We recently found that tolerogenic myeloid cells accumulate in the circulation of HNSCC patients undergoing radiotherapy. Here, we analyzed tumor-containing lymph node biopsies collected from these patients. After 2 weeks of radiotherapy, we found an increase in tumor-associated macrophages (TAMs) with activated STAT3, while CD8+ T cells were reduced as detected using multiplex IHC. Gene expression profiling indicated upregulation of M2 macrophage-related genes (CD163, CD206), immunosuppressive mediators (ARG1, LIF, TGFB1), and Th2 cytokines (IL4, IL5) in irradiated tumors. We next validated STAT3 as a potential target in human HNSCC-associated TAMs, using UM-SCC1 xenotransplants in humanized mice. Local injections of myeloid cell-targeted STAT3 antisense oligonucleotide (CpG-STAT3ASO) activated human DCs/macrophages and promoted CD8+ T cell recruitment, thereby arresting UM-SCC1 tumor growth. Furthermore, CpG-STAT3ASO synergized with tumor irradiation against syngeneic HPV+ mEERL and HPV- MOC2 HNSCC tumors in mice, triggering tumor regression and/or extending animal survival. The antitumor immune responses were CD8+ and CD4+ T cell dependent and associated with the activation of antigen-presenting cells (DCs/M1 macrophages) and increased CD8+ to regulatory T cell ratio. Our observations suggest that targeted inhibition of STAT3 in tumor-associated myeloid cells augments the efficacy of radiotherapy against HNSCC.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias de Cabeça e Pescoço , Imunidade Celular , Células Mieloides , Carcinoma de Células Escamosas de Cabeça e Pescoço , Células Th2 , Animais , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/patologia , Linhagem Celular Tumoral , Neoplasias de Cabeça e Pescoço/imunologia , Neoplasias de Cabeça e Pescoço/patologia , Neoplasias de Cabeça e Pescoço/radioterapia , Camundongos , Células Mieloides/imunologia , Células Mieloides/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/imunologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/radioterapia , Células Th2/imunologia , Células Th2/patologia
11.
Biomaterials ; 267: 120463, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33130321

RESUMO

The crucial balance of stability in blood-circulation and tumor-specific delivery has been suggested as one of the challenges for effective bench-to-bedside translation of nanomedicines (NMs). Herein, we developed a supramolecularly enabled tumor-extracellular (Tex) pH-triggered NM that can maintain the micellar structure with the entrapped-drug during systemic circulation and progressively release drug in the tumor by rightly sensing heterogeneous tumor-pH. Desacetylvinblastine hydrazide (DAVBNH), a derivative of potent anticancer drug vinblastine, was conjugated to an aliphatic ketone-functionalized poly(ethylene glycol)-b-poly(amino acid) copolymer and the hydrolytic stability of the derived hydrazone bond was efficiently tailored by exploiting the compartmentalized structure of polymer micelle. We confirmed an effective and safe therapeutic application of Tex pH-sensitive DAVBNH-loaded micelle (Tex-micelle) in orthotopic glioblastoma (GBM) models, extending median survival to 1.4 times in GBM xenograft and 2.6 times in GBM syngeneic model, compared to that of the free DAVBNH. The work presented here offers novel chemical insights into the molecular design of smart NMs correctly sensing Tex-pH via programmed functionalities. The practical engineering strategy based on a clinically relevant NM platform, and the encouraging therapeutic application of Tex-micelle in GBM, one of the most lethal human cancers, thus suggests the potential clinical translation of this system against other types of common cancers, including GBM.


Assuntos
Glioblastoma , Microambiente Tumoral , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Liberação Controlada de Fármacos , Glioblastoma/tratamento farmacológico , Humanos , Concentração de Íons de Hidrogênio , Micelas , Nanomedicina , Polietilenoglicóis
12.
J Control Release ; 321: 159-173, 2020 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-32045622

RESUMO

Compact nanohybrids can potentially unite various therapeutic features and reduce side effects for precise cancer therapy. However, the poor accumulation and limited tumor penetration of drugs at the tumor impede the manifestation of nanomedicine. We developed a rabies virus glycoprotein (RVG)-amplified hierarchical targeted hybrid that acts as a stealthy and magnetolytic carrier that transports dual tumor-penetrating agents incorporating two drugs (boron-doped graphene quantum dots (B-GQDs)/doxorubicin and pH-responsive dendrimers (pH-Den)/palbociclib). The developed RVG-decorated hybrids (RVG-hybrids) enhance the accumulation of drugs at tumor by partially bypassing the BBB via spinal cord transportation and pH-induced aggregation of hierarchical targeting. The penetrated delivery of dual pH-Den and B-GQD drugs to deep tumors is actuated by magnetoelectric effect, which are able to generate electrons to achieve electrostatic repulsion and disassemble the hybrids into components of a few nanometers in size. The synergy of magnetoelectric drug penetration and chemotherapy was achieved by delivery of the B-GQDs and pH-Den to orthotopic tumors, which prolonged the host survival time. This RVG-amplified dual hierarchical delivery integrated with controlled and penetrated release from this hybrid improve the distribution of the therapeutic agents at the brain tumor for synergistic therapy, exhibiting potential for clinic use.


Assuntos
Neoplasias Encefálicas , Grafite , Vírus da Raiva , Neoplasias Encefálicas/tratamento farmacológico , Linhagem Celular Tumoral , Doxorrubicina , Sistemas de Liberação de Medicamentos , Glicoproteínas , Humanos
13.
Blood ; 135(3): 167-180, 2020 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-31805184

RESUMO

NF-κB is a key regulator of inflammation and cancer progression, with an important role in leukemogenesis. Despite its therapeutic potential, targeting NF-κB using pharmacologic inhibitors has proven challenging. Here, we describe a myeloid cell-selective NF-κB inhibitor using an miR-146a mimic oligonucleotide conjugated to a scavenger receptor/Toll-like receptor 9 agonist (C-miR146a). Unlike an unconjugated miR146a, C-miR146a was rapidly internalized and delivered to the cytoplasm of target myeloid cells and leukemic cells. C-miR146a reduced expression of classic miR-146a targets (IRAK1 and TRAF6), thereby blocking activation of NF-κB in target cells. IV injections of C-miR146a mimic to miR-146a-deficient mice prevented excessive NF-κB activation in myeloid cells, and thus alleviated myeloproliferation and mice hypersensitivity to bacterial challenge. Importantly, C-miR146a showed efficacy in dampening severe inflammation in clinically relevant models of chimeric antigen receptor (CAR) T-cell-induced cytokine release syndrome. Systemic administration of C-miR146a oligonucleotide alleviated human monocyte-dependent release of IL-1 and IL-6 in a xenotransplanted B-cell lymphoma model without affecting CD19-specific CAR T-cell antitumor activity. Beyond anti-inflammatory functions, miR-146a is a known tumor suppressor commonly deleted or expressed at reduced levels in human myeloid leukemia. Using The Cancer Genome Atlas acute myeloid leukemia data set, we found an inverse correlation of miR-146a levels with NF-κB-related genes and with patient survival. Correspondingly, C-miR146a induced cytotoxic effects in human MDSL, HL-60, and MV4-11 leukemia cells in vitro. The repeated IV administration of C-miR146a inhibited expression of NF-κB target genes and thereby thwarted progression of disseminated HL-60 leukemia. Our results show the potential of using myeloid cell-targeted miR-146a mimics for the treatment of inflammatory and myeloproliferative disorders.


Assuntos
Síndrome da Liberação de Citocina/prevenção & controle , Inflamação/prevenção & controle , Leucemia Mieloide Aguda/prevenção & controle , MicroRNAs/genética , Células Progenitoras Mieloides/patologia , NF-kappa B/metabolismo , Animais , Apoptose , Proliferação de Células , Síndrome da Liberação de Citocina/genética , Síndrome da Liberação de Citocina/patologia , Feminino , Regulação da Expressão Gênica , Humanos , Inflamação/genética , Inflamação/patologia , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos SCID , Células Progenitoras Mieloides/metabolismo , NF-kappa B/genética , Fator 6 Associado a Receptor de TNF/genética , Fator 6 Associado a Receptor de TNF/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
14.
J Clin Invest ; 129(12): 5079-5081, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31657787

RESUMO

Neutrophils are early wound healing and inflammation regulators that, due to functional plasticity, can adopt either pro- or antitumor functions. Until recently, beclin-1 was a protein known mainly for its role as a critical regulator of autophagy. In this issue of the JCI, Tan et al. describe the effects of the beclin-1 conditional myeloid cell-specific deletion in mice, in which immunostimulation resulted in hypersensitive neutrophils. The chronic proinflammatory effect of these neutrophils triggered spontaneous B cell malignancies to develop. Such tumorigenic effects were mediated primarily by IL-21 and CD40 signaling, leading to the upregulation of tolerogenic molecules, such as IL-10 and PD-L1. The authors went on to examine samples derived from patient lymphoid malignancies and showed that beclin-1 expression in neutrophils positively correlated with pre-B cell leukemia/lymphoma. Overall, the study provides an elegant model for neutrophil-driven carcinogenesis and identifies potential targets for immunotherapy of B cell malignancies.


Assuntos
Autofagia , Linfoma , Animais , Proteína Beclina-1 , Humanos , Camundongos , Neutrófilos , Células Precursoras de Linfócitos B
15.
Methods Mol Biol ; 1974: 141-150, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31099000

RESUMO

Elevated levels of microRNAs in cancer cells are often associated with oncogenic effects and thus provide potential therapeutic targets. However, the lack of efficient delivery methods for synthetic miRNA inhibitors, antagomiR, or anti-miR oligonucleotides hindered clinical translation of such strategies. We recently developed an approach for targeted delivery of synthetic, 2'-O-methyl-modified antagomiR molecules to normal and malignant myeloid cells and B cells by tethering to the single-stranded, phosphorothioate oligodeoxynucleotides (PSO). The PSO-antagomiR are rapidly internalized through scavenger receptor-mediated endocytosis by human monocytes, dendritic cells, B cells, as well as myeloid leukemia and B-cell lymphoma cells, but not by T cells. Following internalization, the unformulated PSO-antagomiR potently reduces levels of target miRNA and modulates expression of downstream protein targets, both in vitro and in vivo. The simple design of PSO-antagomiR conjugates enable adaptation of this strategy for targeting oncogenic miRNAs in nonmalignant and malignant myeloid cells and B cells.


Assuntos
Antagomirs/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Leucemia Mieloide/genética , Linfoma de Células B/genética , Animais , Linfócitos B , Humanos , Leucemia Mieloide/terapia , Linfoma de Células B/terapia , Camundongos , MicroRNAs/efeitos dos fármacos , MicroRNAs/genética , Células Mieloides/efeitos dos fármacos , Oligonucleotídeos Fosforotioatos/genética , Oligonucleotídeos Fosforotioatos/farmacologia , Linfócitos T/efeitos dos fármacos
16.
Nano Lett ; 19(1): 69-81, 2019 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-30521346

RESUMO

Dual-targeted delivery of drugs and energy by nanohybrids can potentially alleviate side effects and improve the unique features required for precision medicine. To realize this aim, however, the hybrids which are often rapidly removed from circulation and the piled up tumors periphery near the blood vessels must address the difficulties in low blood half-lives and tumor penetration. In this study, a sponge-inspired carbon composites-supported red blood cell (RBC) membrane that doubles as a stealth agent and photolytic carrier that transports tumor-penetrative agents (graphene quantum dots and docetaxel (GQD-D)) and heat with irradiation was developed. The RBC-membrane enveloped nanosponge (RBC@NS) integrated to a targeted protein that accumulates in tumor spheroids via high lateral bilayer fluidity exhibits an 8-fold increase in accumulation compared to the NS. Penetrative delivery of GQDs to tumor sites is actuated by near-infrared irradiation through a one-atom-thick structure, facilitating penetration and drug delivery deep into the tumor tissue. The synergy of chemotherapy and photolytic effects was delivered by the theranostic GQDs deep into tumors, which effectively damaged and inhibited the tumor in 21 days when treated with a single irradiation. This targeted RBC@GQD-D/NS with the capabilities of enhanced tumor targeting, NIR-induced drug penetration into tumors, and thermal ablation for photolytic therapy promotes tumor suppression and exhibits potential for other biomedical applications.


Assuntos
Doxorrubicina/farmacologia , Sistemas de Liberação de Medicamentos , Grafite/farmacologia , Neoplasias/tratamento farmacológico , Animais , Biomimética , Linhagem Celular Tumoral , Membrana Celular/química , Membrana Celular/efeitos dos fármacos , Doxorrubicina/química , Eritrócitos/química , Eritrócitos/efeitos dos fármacos , Grafite/química , Humanos , Camundongos , Nanoestruturas/química , Pontos Quânticos/química , Nanomedicina Teranóstica
17.
Clin Cancer Res ; 24(23): 5948-5962, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30337279

RESUMO

PURPOSE: Prostate cancers show remarkable resistance to emerging immunotherapies, partly due to tolerogenic STAT3 signaling in tumor-associated myeloid cells. Here, we describe a novel strategy combining STAT3 inhibition with Toll-like Receptor 9 (TLR9) stimulation to unleash immune response against prostate cancers regardless of the genetic background. EXPERIMENTAL DESIGN: We developed and validated a conjugate of the STAT3 antisense oligonucleotide (ASO) tethered to immunostimulatory TLR9 agonist (CpG oligonucleotide) to improve targeting of human and mouse prostate cancer and myeloid immune cells, such as myeloid-derived suppressor cells (MDSC). RESULTS: CpG-STAT3ASO conjugates showed improved biodistribution and potency of STAT3 knockdown in target cells in vitro and in vivo. Systemic administration of CpG-STAT3ASO (5 mg/kg) eradicated bone-localized, Ras/Myc-driven, and Ptenpc -/- Smad4pc -/- Trp53c -/- prostate tumors in the majority of treated mice. These antitumor effects were primarily immune-mediated and correlated with an increased ratio of CD8+ to regulatory T cells and reduced pSTAT3+/PD-L1+ MDSCs. Both innate and adaptive immunity contributed to systemic antitumor responses as verified by the depletion of Gr1+ myeloid cells and CD8+ and CD4+ T cells, respectively. Importantly, only the bifunctional CpG-STAT3ASO, but not control CpG oligonucleotides, STAT3ASO alone, or the coinjection of both oligonucleotides, succeeded in recruiting neutrophils and CD8+ T cells into tumors. Thus, the concurrence of TLR9 activation with STAT3 inhibition in the same cellular compartment is indispensable for overcoming tumor immune tolerance and effective antitumor immunity against prostate cancer. CONCLUSIONS: The bifunctional, immunostimulatory, and tolerance-breaking design of CpG-STAT3ASO offers a blueprint for the development of effective and safer oligonucleotide strategies for treatment of immunologically "cold" human cancers.


Assuntos
Heterogeneidade Genética , Imunomodulação/efeitos dos fármacos , Oligodesoxirribonucleotídeos/administração & dosagem , Oligonucleotídeos Antissenso/administração & dosagem , Neoplasias de Próstata Resistentes à Castração/etiologia , Neoplasias de Próstata Resistentes à Castração/metabolismo , Fator de Transcrição STAT3/genética , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Imunofluorescência , Técnicas de Silenciamento de Genes , Humanos , Tolerância Imunológica , Imunofenotipagem , Masculino , Camundongos , Camundongos Transgênicos , Oligodesoxirribonucleotídeos/imunologia , Oligonucleotídeos Antissenso/imunologia , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/patologia , Fator de Transcrição STAT3/metabolismo , Subpopulações de Linfócitos T/efeitos dos fármacos , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Receptor Toll-Like 9/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Pharmaceutics ; 10(4)2018 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-30340364

RESUMO

Theranostic nanoparticles recently received great interest for uniting unique functions to amplify therapeutic efficacy and reduce side effects. Despite the enhanced permeability and retention (EPR) effect, which amplifies the accumulation of nanoparticles at the site of a tumor, tumor heterogeneity caused by the dense extracellular matrix of growing cancer cells and the interstitial fluid pressure from abnormal angiogenesis in the tumor inhibit drug/particle penetration, leading to inhomogeneous and limited treatments. Therefore, nanoparticles for penetrated delivery should be designed with different strategies to enhance efficacy. Many strategies were developed to overcome the obstacles in cancer therapy, and they can be divided into three main parts: size changeability, ligand functionalization, and modulation of the tumor microenvironment. This review summarizes the results of ameliorated tumor penetration approaches and amplified therapeutic efficacy in nanomedicines. As the references reveal, further study needs to be conducted with comprehensive strategies with broad applicability and potential translational development.

19.
Int J Mol Sci ; 19(6)2018 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-29921770

RESUMO

Myeloid immune cells, such as dendritic cells, monocytes, and macrophages, play a central role in the generation of immune responses and thus are often either disabled or even hijacked by tumors. These new tolerogenic activities of tumor-associated myeloid cells are controlled by an oncogenic transcription factor, signal transducer and activator of transcription 3 (STAT3). STAT3 multitasks to ensure tumors escape immune detection by impairing antigen presentation and reducing production of immunostimulatory molecules while augmenting the release of tolerogenic mediators, thereby reducing innate and adaptive antitumor immunity. Tumor-associated myeloid cells and STAT3 signaling in this compartment are now commonly recognized as an attractive cellular target for improving efficacy of standard therapies and immunotherapies. Hereby, we review the importance and functional complexity of STAT3 signaling in this immune cell compartment as well as potential strategies for cancer therapy.


Assuntos
Terapia de Imunossupressão/métodos , Células Supressoras Mieloides/imunologia , Neoplasias/imunologia , Fator de Transcrição STAT3/genética , Animais , Células Dendríticas/citologia , Células Dendríticas/imunologia , Humanos , Macrófagos/citologia , Macrófagos/imunologia , Células Supressoras Mieloides/citologia , Mielopoese , Neoplasias/terapia , Fator de Transcrição STAT3/metabolismo
20.
Nat Med ; 24(4): 450-462, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29505034

RESUMO

Leukemia stem cells (LSCs) in individuals with chronic myelogenous leukemia (CML) (hereafter referred to as CML LSCs) are responsible for initiating and maintaining clonal hematopoiesis. These cells persist in the bone marrow (BM) despite effective inhibition of BCR-ABL kinase activity by tyrosine kinase inhibitors (TKIs). Here we show that although the microRNA (miRNA) miR-126 supported the quiescence, self-renewal and engraftment capacity of CML LSCs, miR-126 levels were lower in CML LSCs than in long-term hematopoietic stem cells (LT-HSCs) from healthy individuals. Downregulation of miR-126 levels in CML LSCs was due to phosphorylation of Sprouty-related EVH1-domain-containing 1 (SPRED1) by BCR-ABL, which led to inhibition of the RAN-exportin-5-RCC1 complex that mediates miRNA maturation. Endothelial cells (ECs) in the BM supply miR-126 to CML LSCs to support quiescence and leukemia growth, as shown using mouse models of CML in which Mir126a (encoding miR-126) was conditionally knocked out in ECs and/or LSCs. Inhibition of BCR-ABL by TKI treatment caused an undesired increase in endogenous miR-126 levels, which enhanced LSC quiescence and persistence. Mir126a knockout in LSCs and/or ECs, or treatment with a miR-126 inhibitor that targets miR-126 expression in both LSCs and ECs, enhanced the in vivo anti-leukemic effects of TKI treatment and strongly diminished LSC leukemia-initiating capacity, providing a new strategy for the elimination of LSCs in individuals with CML.


Assuntos
Medula Óssea/patologia , Autorrenovação Celular , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , MicroRNAs/metabolismo , Células-Tronco Neoplásicas/patologia , Nicho de Células-Tronco , Animais , Regulação para Baixo/genética , Células Endoteliais/metabolismo , Vesículas Extracelulares/metabolismo , Proteínas de Fusão bcr-abl/metabolismo , Regulação Leucêmica da Expressão Gênica , Técnicas de Silenciamento de Genes , Inativação Gênica , Células-Tronco Hematopoéticas/metabolismo , Humanos , Camundongos , MicroRNAs/genética , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/ultraestrutura , Inibidores de Proteínas Quinases/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA