Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biophys J ; 123(2): 235-247, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38102828

RESUMO

The use of bispecific antibodies as T cell engagers can bypass the normal T cell receptor-major histocompatibility class interaction, redirect the cytotoxic activity of T cells, and lead to highly efficient tumor cell killing. However, this immunotherapy also causes significant on-target off-tumor toxicologic effects, especially when it is used to treat solid tumors. To avoid these adverse events, it is necessary to understand the fundamental mechanisms involved in the physical process of T cell engagement. We developed a multiscale computational framework to reach this goal. The framework combines simulations on the intercellular and multicellular levels. On the intercellular level, we simulated the spatial-temporal dynamics of three-body interactions among bispecific antibodies, CD3 and tumor-associated antigens (TAAs). The derived number of intercellular bonds formed between CD3 and TAAs was further transferred to the multicellular simulations as the input parameter of adhesive density between cells. Through the simulations under various molecular and cellular conditions, we were able to gain new insights into how to adopt the most appropriate strategy to maximize the drug efficacy and avoid the off-target effect. For instance, we discovered that the low antibody-binding affinity resulted in the formation of large clusters at the cell-cell interface, which could be important to control the downstream signaling pathways. We also tested different molecular architectures of the bispecific antibody and suggested the existence of an optimal length in regulating the T cell engagement. Overall, the current multiscale simulations serve as a proof-of-concept study to help in the future design of new biological therapeutics.


Assuntos
Anticorpos Biespecíficos , Neoplasias , Humanos , Linfócitos T , Anticorpos Biespecíficos/química , Anticorpos Biespecíficos/uso terapêutico , Complexo CD3/farmacologia , Neoplasias/tratamento farmacológico , Imunoterapia/métodos
2.
bioRxiv ; 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37333150

RESUMO

The use of bispecific antibodies as T cell engagers can bypass the normal TCR-MHC interaction, redirect the cytotoxic activity of T-cells, and lead to highly efficient tumor cell killing. However, this immunotherapy also causes significant on-target off-tumor toxicologic effects, especially when they were used to treat solid tumors. In order to avoid these adverse events, it is necessary to understand the fundamental mechanisms during the physical process of T cell engagement. We developed a multiscale computational framework to reach this goal. The framework combines simulations on the intercellular and multicellular levels. On the intercellular level, we simulated the spatial-temporal dynamics of three-body interactions among bispecific antibodies, CD3 and TAA. The derived number of intercellular bonds formed between CD3 and TAA were further transferred into the multicellular simulations as the input parameter of adhesive density between cells. Through the simulations under various molecular and cellular conditions, we were able to gain new insights of how to adopt the most appropriate strategy to maximize the drug efficacy and avoid the off-target effect. For instance, we discovered that the low antibody binding affinity resulted in the formation of large clusters at the cell-cell interface, which could be important to control the downstream signaling pathways. We also tested different molecular architectures of the bispecific antibody and suggested the existence of an optimal length in regulating the T cell engagement. Overall, the current multiscale simulations serve as a prove-of-concept study to help the future design of new biological therapeutics. SIGNIFICANCE: T-cell engagers are a class of anti-cancer drugs that can directly kill tumor cells by bringing T cells next to them. However, current treatments using T-cell engagers can cause serious side-effects. In order to reduce these effects, it is necessary to understand how T cells and tumor cells interact together through the connection of T-cell engagers. Unfortunately, this process is not well studied due to the limitations in current experimental techniques. We developed computational models on two different scales to simulate the physical process of T cell engagement. Our simulation results provide new insights into the general properties of T cell engagers. The new simulation methods can therefore serve as a useful tool to design novel antibodies for cancer immunotherapy.

3.
Comput Biol Chem ; 103: 107823, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36682326

RESUMO

Proteins in the tumor necrosis factor (TNF) superfamily (TNFSF) regulate diverse cellular processes by interacting with their receptors in the TNF receptor (TNFR) superfamily (TNFRSF). Ligands and receptors in these two superfamilies form a complicated network of interactions, in which the same ligand can bind to different receptors and the same receptor can be shared by different ligands. In order to study these interactions on a systematic level, a TNFSF-TNFRSF interactome was constructed in this study by searching the database which consists of both experimentally measured and computationally predicted protein-protein interactions (PPIs). The interactome contains a total number of 194 interactions between 18 TNFSF ligands and 29 TNFRSF receptors in human. We modeled the structure for each ligand-receptor interaction in the network. Their binding affinities were further computationally estimated based on modeled structures. Our computational outputs, which are all publicly accessible, serve as a valuable addition to the currently limited experimental resources to study TNF-mediated cell signaling.


Assuntos
Receptores do Fator de Necrose Tumoral , Fator de Necrose Tumoral alfa , Humanos , Ligantes , Receptores do Fator de Necrose Tumoral/química , Receptores do Fator de Necrose Tumoral/metabolismo
4.
J Cell Commun Signal ; 17(3): 657-671, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36167956

RESUMO

TNFα is a highly pleiotropic cytokine inducing inflammatory signaling pathways. It is initially presented on plasma membrane of cells (mTNFα), and also exists in a soluble variant (sTNFα) after cleavage. The ligand is shared by two structurally similar receptors, TNFR1 and TNFR2. Interestingly, while sTNFα preferentially stimulates TNFR1, TNFR2 signaling can only be activated by mTNFα. How can two similar receptors respond to the same ligand in such a different way? We employed computational simulations in multiple scales to address this question. We found that both mTNFα and sTNFα can trigger the clustering of TNFR1. The size of clusters induced by sTNFα is constantly larger than the clusters induced by mTNFα. The systems of TNFR2, on the other hand, show very different behaviors. Only when the interactions between TNFR2 are very weak, mTNFα can trigger the receptors to form very large clusters. Given the same weak binding affinity, only small oligomers were obtained in the system of sTNFα. Considering that TNF-mediated signaling is modulated by the ligand-induced clustering of receptors on cell surface, our study provided the mechanistic foundation to the phenomenon that different isoforms of the ligand can lead to highly distinctive signaling patterns for its receptors.

5.
Genomics Proteomics Bioinformatics ; 19(6): 1012-1022, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33838354

RESUMO

The cellular functions of proteins are maintained by forming diverse complexes. The stability of these complexes is quantified by the measurement of binding affinity, and mutations that alter the binding affinity can cause various diseases such as cancer and diabetes. As a result, accurate estimation of the binding stability and the effects of mutations on changes of binding affinity is a crucial step to understanding the biological functions of proteins and their dysfunctional consequences. It has been hypothesized that the stability of a protein complex is dependent not only on the residues at its binding interface by pairwise interactions but also on all other remaining residues that do not appear at the binding interface. Here, we computationally reconstruct the binding affinity by decomposing it into the contributions of interfacial residues and other non-interfacial residues in a protein complex. We further assume that the contributions of both interfacial and non-interfacial residues to the binding affinity depend on their local structural environments such as solvent-accessible surfaces and secondary structural types. The weights of all corresponding parameters are optimized by Monte-Carlo simulations. After cross-validation against a large-scale dataset, we show that the model not only shows a strong correlation between the absolute values of the experimental and calculated binding affinities, but can also be an effective approach to predict the relative changes of binding affinity from mutations. Moreover, we have found that the optimized weights of many parameters can capture the first-principle chemical and physical features of molecular recognition, therefore reversely engineering the energetics of protein complexes. These results suggest that our method can serve as a useful addition to current computational approaches for predicting binding affinity and understanding the molecular mechanism of protein-protein interactions.


Assuntos
Proteínas , Ligação Proteica , Proteínas/metabolismo
6.
Comput Struct Biotechnol J ; 19: 1620-1634, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33868599

RESUMO

The binding of cell surface receptors with extracellular ligands triggers distinctive signaling pathways, leading into the corresponding phenotypic variation of cells. It has been found that in many systems, these ligand-receptor complexes can further oligomerize into higher-order structures. This ligand-induced oligomerization of receptors on cell surfaces plays an important role in regulating the functions of cell signaling. The underlying mechanism, however, is not well understood. One typical example is proteins that belong to the tumor necrosis factor receptor (TNFR) superfamily. Using a generic multiscale simulation platform that spans from atomic to subcellular levels, we compared the detailed physical process of ligand-receptor oligomerization for two specific members in the TNFR superfamily: the complex formed between ligand TNFα and receptor TNFR1 versus the complex formed between ligand TNFß and receptor TNFR2. Interestingly, although these two systems share high similarity on the tertiary and quaternary structural levels, our results indicate that their oligomers are formed with very different dynamic properties and spatial patterns. We demonstrated that the changes of receptor's conformational fluctuations due to the membrane confinements are closely related to such difference. Consistent to previous experiments, our simulations also showed that TNFR can preassemble into dimers prior to ligand binding, while the introduction of TNF ligands induced higher-order oligomerization due to a multivalent effect. This study, therefore, provides the molecular basis to TNFR oligomerization and reveals new insights to TNFR-mediated signal transduction. Moreover, our multiscale simulation framework serves as a prototype that paves the way to study higher-order assembly of cell surface receptors in many other bio-systems.

7.
Integr Biol (Camb) ; 13(5): 109-120, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33893499

RESUMO

The nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) is one of the most important transcription factors involved in the regulation of inflammatory signaling pathways. Inappropriate activation of these pathways has been linked to autoimmunity and cancers. Emerging experimental evidences have been showing the existence of elaborate spatial organizations for various molecular components in the pathways. One example is the scaffold protein tumor necrosis factor receptor associated factor (TRAF). While most TRAF proteins form trimeric quaternary structure through their coiled-coil regions, the N-terminal region of some members in the family can further be dimerized. This dimerization of TRAF trimers can drive them into higher-order clusters as a response to receptor stimulation, which functions as a spatial platform to mediate the downstream poly-ubiquitination. However, the molecular mechanism underlying the TRAF protein clustering and its functional impacts are not well-understood. In this article, we developed a hybrid simulation method to tackle this problem. The assembly of TRAF-based signaling platform at the membrane-proximal region is modeled with spatial resolution, while the dynamics of downstream signaling network, including the negative feedbacks through various signaling inhibitors, is simulated as stochastic chemical reactions. These two algorithms are further synchronized under a multiscale simulation framework. Using this computational model, we illustrated that the formation of TRAF signaling platform can trigger an oscillatory NF-κB response. We further demonstrated that the temporal patterns of downstream signal oscillations are closely regulated by the spatial factors of TRAF clustering, such as the geometry and energy of dimerization between TRAF trimers. In general, our study sheds light on the basic mechanism of NF-κB signaling pathway and highlights the functional importance of spatial regulation within the pathway. The simulation framework also showcases its potential of application to other signaling pathways in cells.


Assuntos
NF-kappa B , Transdução de Sinais , NF-kappa B/metabolismo
8.
Int J Mol Sci ; 21(5)2020 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-32150842

RESUMO

Ligands in the tumor necrosis factor (TNF) superfamily are one major class of cytokines that bind to their corresponding receptors in the tumor necrosis factor receptor (TNFR) superfamily and initiate multiple intracellular signaling pathways during inflammation, tissue homeostasis, and cell differentiation. Mutations in the genes that encode TNF ligands or TNFR receptors result in a large variety of diseases. The development of therapeutic treatment for these diseases can be greatly benefitted from the knowledge on binding properties of these ligand-receptor interactions. In order to complement the limitations in the current experimental methods that measure the binding constants of TNF/TNFR interactions, we developed a new simulation strategy to computationally estimate the association and dissociation between a ligand and its receptor. We systematically tested this strategy to a comprehensive dataset that contained structures of diverse complexes between TNF ligands and their corresponding receptors in the TNFR superfamily. We demonstrated that the binding stabilities inferred from our simulation results were compatible with existing experimental data. We further compared the binding kinetics of different TNF/TNFR systems, and explored their potential functional implication. We suggest that the transient binding between ligands and cell surface receptors leads into a dynamic nature of cross-membrane signal transduction, whereas the slow but strong binding of these ligands to the soluble decoy receptors is naturally designed to fulfill their functions as inhibitors of signal activation. Therefore, our computational approach serves as a useful addition to current experimental techniques for the quantitatively comparison of interactions across different members in the TNF and TNFR superfamily. It also provides a mechanistic understanding to the functions of TNF-associated cell signaling pathways.


Assuntos
Simulação por Computador , Conformação Proteica , Receptores do Fator de Necrose Tumoral/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Humanos , Cinética , Ligantes , Ligação Proteica , Receptores do Fator de Necrose Tumoral/química , Transdução de Sinais , Fator de Necrose Tumoral alfa/química
9.
Comput Struct Biotechnol J ; 18: 258-270, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32021664

RESUMO

By recognizing members in the tumor necrosis factor (TNF) receptor superfamily, TNF ligand proteins function as extracellular cytokines to activate various signaling pathways involved in inflammation, proliferation, and apoptosis. Most ligands in TNF superfamily are trimeric and can simultaneously bind to three receptors on cell surfaces. It has been experimentally observed that the formation of these molecular complexes further triggers the oligomerization of TNF receptors, which in turn regulate the intracellular signaling processes by providing transient compartmentalization in the membrane proximal regions of cytoplasm. In order to decode the molecular mechanisms of oligomerization in TNF receptor superfamily, we developed a new computational method that can physically simulate the spatial-temporal process of binding between TNF ligands and their receptors. The simulations show that the TNF receptors can be organized into hexagonal oligomers. The formation of this spatial pattern is highly dependent not only on the molecular properties such as the affinities of trans and cis binding, but also on the cellular factors such as the concentration of TNF ligands in the extracellular area or the density of TNF receptors on cell surfaces. Moreover, our model suggests that if TNF receptors are pre-organized into dimers before ligand binding, these lateral interactions between receptor monomers can play a positive role in stabilizing the ligand-receptor interactions, as well as in regulating the kinetics of receptor oligomerization. Altogether, this method throws lights on the mechanisms of TNF ligand-receptor interactions in cellular environments.

10.
Proteins ; 88(5): 698-709, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31710744

RESUMO

The interactions between tumor necrosis factors (TNFs) and their corresponding receptors (TNFRs) play a pivotal role in inflammatory responses. Upon ligand binding, TNFR receptors were found to form oligomers on cell surfaces. However, the underlying mechanism of oligomerization is not fully understood. In order to tackle this problem, molecular dynamics (MD) simulations have been applied to the complex between TNF receptor-1 (TNFR1) and its ligand TNF-α as a specific test system. The simulations on both all-atom (AA) and coarse-grained (CG) levels achieved the similar results that the extracellular domains of TNFR1 can undergo large fluctuations on plasma membrane, while the dynamics of TNFα-TNFR1 complex is much more constrained. Using the CG model with the Martini force field, we are able to simulate the systems that contain multiple TNFα-TNFR1 complexes with the timescale of microseconds. We found that complexes can aggregate into oligomers on the plasma membrane through the lateral interactions between receptors at the end of the CG simulations. We suggest that this spatial organization is essential to the efficiency of signal transduction for ligands that belong to the TNF superfamily. We further show that the aggregation of two complexes is initiated by the association between the N-terminal domains of TNFR1 receptors. Interestingly, the cis-interfaces between N-terminal regions of two TNF receptors have been observed in the previous X-ray crystallographic experiment. Therefore, we provide supportive evidence that cis-interface is of functional importance in triggering the receptor oligomerization. Taken together, our study brings insights to understand the molecular mechanism of TNF signaling.


Assuntos
Membrana Celular/química , Simulação de Dinâmica Molecular , Receptores Tipo I de Fatores de Necrose Tumoral/química , Fator de Necrose Tumoral alfa/química , Sítios de Ligação , Membrana Celular/metabolismo , Humanos , Cinética , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Termodinâmica , Fator de Necrose Tumoral alfa/metabolismo
11.
J Phys Chem B ; 122(21): 5557-5566, 2018 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-29482320

RESUMO

Effects of trimethylamine- N-oxide (TMAO) on hydrophobic and charge-charge interactions are investigated using molecular dynamics simulations. Recently, these interactions in model peptides and in the Trp-Cage miniprotein have been reported to be strongly affected by TMAO. Neopentane dimers and Na+Cl- are used, here, as models for hydrophobic and charge-charge interactions, respectively. Distance-dependent interactions, i.e., potential of mean force, are computed using an umbrella sampling protocol at different temperatures which allows us to determine enthalpy and entropic energies. We find that the large favorable entropic energy and the unfavorable enthalpy, which are characteristic of hydrophobic interactions, become smaller when TMAO is added to water. These changes account for a negligible effect and a stabilizing effect on the strength of hydrophobic interactions for simulations performed with Kast and Netz models of TMAO, respectively. Effects of TMAO on the enthalpy are mainly due to changes in terms of the potential energy involving solvent-solvent molecules. At the molecular level, TMAO is incorporated in the solvation shell of neopentane which may explain its effect on the enthalpy and entropic energy. Charge-charge interactions become stronger when TMAO is added to water because this osmolyte decreases the enthalpic penalty of bringing Na+ and Cl- close together mainly by affecting ion-solvent interactions. TMAO is attracted to Na+, becoming part of its solvation shell, whereas it is excluded from the vicinity of Cl-. These results are more pronounced for simulation performed with the Netz model which is more hydrophobic and has a larger dipole moment compared to the Kast model of TMAO.


Assuntos
Metilaminas/química , Cloretos/química , Dimerização , Interações Hidrofóbicas e Hidrofílicas , Simulação de Dinâmica Molecular , Pentanos/química , Peptídeos/química , Peptídeos/metabolismo , Ligação Proteica , Sódio/química , Termodinâmica , Água/química
12.
Phys Rev Lett ; 119(10): 108102, 2017 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-28949191

RESUMO

To provide insights into the stabilizing mechanisms of trimethylamine-N-oxide (TMAO) on protein structures, we perform all-atom molecular dynamics simulations of peptides and the Trp-cage miniprotein. The effects of TMAO on the backbone and charged residues of peptides are found to stabilize compact conformations, whereas effects of TMAO on nonpolar residues lead to peptide swelling. This suggests competing mechanisms of TMAO on proteins, which accounts for hydrophobic swelling, backbone collapse, and stabilization of charge-charge interactions. These mechanisms are observed in Trp cage.


Assuntos
Metilaminas/química , Simulação de Dinâmica Molecular , Peptídeos/química , Proteínas/química , Interações Hidrofóbicas e Hidrofílicas , Conformação Molecular
13.
J Phys Chem B ; 118(37): 10830-6, 2014 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-25158278

RESUMO

In this work we study contributions of mainchain and side chain atoms to fibrillization of polyalanine peptides using all-atom molecular dynamics simulations. We show that the total number of hydrogen bonds in the system does not change significantly during aggregation. This emerges from a compensatory mechanism where the formation of one interpeptide hydrogen bond requires rupture of two peptide-water bonds, leading to the formation of one extra water-water bond. Since hydrogen bonds are mostly electrostatic in nature, this mechanism implies that electrostatic energies related to these bonds are not minimized during fibril formation. Therefore, hydrogen bonds do not drive fibrillization in all-atom models. Nevertheless, they play an important role in this process since aggregation without the formation of interpeptide hydrogen bonds accounts for a prohibitively large electrostatic penalty (~9.4 kJ/mol). Our work also highlights the importance of using accurate models to describe chemical bonds since Lennard-Jones and electrostatic contributions of different chemical groups of the protein and solvent are 1 order of magnitude larger than the overall enthalpy of the system. Thus, small errors in modeling these interactions can produce large errors in the total enthalpy of the system.


Assuntos
Peptídeos/química , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Estrutura Secundária de Proteína , Eletricidade Estática , Termodinâmica , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA