Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Clin Cosmet Investig Dermatol ; 17: 1267-1274, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38831784

RESUMO

Background: Cytophagic histiocytic panniculitis (CHP) is a rare panniculitis associated with systemic features characterized by the infiltration of subcutaneous adipose tissue by benign-appearing T lymphocytes and phagocytic histiocytes, mimicking hemophagocytic lymphohistiocytosis (HLH) and subcutaneous panniculitis-like T-cell lymphoma (SPTCL). Purpose: To establish the clinicopathological features and response to treatment of CHP and evaluate the prognosis of patients and guide therapy based on the current state of knowledge. Material and Methods: Clinical, laboratory, histopathological, and outcome data of 12 patients with CHP were retrospectively collected between 2009 and 2022. Results: All the patients presented with plaques or nodules, mostly located in the lower extremities (11/12). Fewer cases involved systemic symptoms (9/12) and laboratory abnormalities (6/12), and none were positive for serum Epstein-Barr virus (EBV)-DNA. Histopathological examination revealed mixed septal and lobular inflammatory infiltration of histiocytes and lymphocytes. Large or atypical lymphocytes were rarely present (2/12). In some patients, varying proportions of plasma cells, neutrophils, and eosinophils were observed. The extent of histocytophagy was mild (9/12), moderate (2/12), and severe (1/12). HLH was not observed in any of our cases, none of which were fatal. Conclusion: The uniqueness of our study lies in the presence of neutrophil-rich dermal and subcutaneous infiltrates, associated with connective tissue disorders (CTD) and streptococcal infections. Our study reveals that EBV-negative CHP tends to a better prognosis than previously research, filling the gap in the much-needed details of CHP in the Chinese population. Moreover, CHP may present as a reactive process in combined primary diseases; further studies are required to validate these findings.


Cytophagic histiocytic panniculitis (CHP) is a rare panniculitis associated with systemic features characterized by the infiltration of subcutaneous adipose tissue by benign-appearing T lymphocytes and phagocytic histiocytes, also may be present in hemophagocytic lymphohistiocytosis and subcutaneous panniculitis-like T-cell lymphoma. The presence of neutrophil-rich dermal and subcutaneous infiltrates, associated with connective tissue disorders and streptococcal infections. In addition, EBV-negative CHP has a better prognosis than previously thought and provides knowledge of its prognosis in the Chinese population. With changes in the disease pedigree supported by the development of medical technology, CHP may present as a reactive process of a combined primary disease.

2.
Int Immunopharmacol ; 122: 110558, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37393836

RESUMO

Atopic dermatitis (AD) is a common chronic inflammatory skin disease causing erythema and itching. The etiology of AD is complex and not yet clear. Vitamin D is a fat-soluble vitamin that promotes skin cell growth and differentiation and regulates immune function. This study aimed to explore the therapeutic effect of calcifediol, the active metabolite of vitamin D, on experimental AD and the possible mechanism of action. We found that the levels of vitamin D binding protein (VDBP) and vitamin D receptor (VDR) in biopsy skin samples from AD patients decreased compared with controls. We used 2,4-dinitrochlorobenzene (DNCB) to induce an AD mouse model on the ear and back of BALB/c mice. A total of five groups were used: the control group, the AD group, the AD + calcifediol group, the AD + dexamethasone group, and the calcifediol alone group. Under calcifediol treatment, mice exhibited reduced spinous layer thickening, reduced inflammatory cell infiltration, downregulated aquaporin 3 (AQP3) expression, and restored the barrier function of the skin. Simultaneous calcifediol treatment decreased STAT3 phosphorylation, inhibited inflammation and chemokine release, decreased AKT1 and mTOR phosphorylation, and suppressed epidermal cell proliferation and abnormal differentiation. In conclusion, our study demonstrated that calcifediol significantly protected mice against DNCB-induced AD. In a mouse model of AD, calcifediol may reduce inflammatory cell infiltration and chemokines by inhibiting the phosphorylation of STAT3 and may restore skin barrier function through the downregulation of AQP3 protein expression and inhibition of cell proliferation.


Assuntos
Dermatite Atópica , Camundongos , Animais , Dermatite Atópica/induzido quimicamente , Dermatite Atópica/tratamento farmacológico , Dinitroclorobenzeno , Vitamina D/uso terapêutico , Vitamina D/farmacologia , Calcifediol/efeitos adversos , Pele/patologia , Quimiocinas , Vitaminas/farmacologia , Imunidade , Camundongos Endogâmicos BALB C , Citocinas/metabolismo
3.
Ren Fail ; 45(1): 2218483, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37293809

RESUMO

Calciphylaxis is a rare cutaneous vascular disease that manifests with intolerable pains, non-healing skin wounds, histologically characterized by calcification, fibrointimal hyperplasia, and microvessel thrombosis. Currently, there are no standardized guidelines for this disease. Recent studies have recognized a high prevalence of thrombophilias and hypercoagulable conditions in calciphylaxis patients. Here, we report a case of uremic calciphylaxis patient whom was refractory to conventional treatments and then received a salvage strategy with intravenous and local hAMSC application. In order to investigate the therapeutic mechanism of hAMSCs from the novel perspective of hypercoagulability, coagulation-related indicators, wound status, quality of life and skin biopsy were followed up. Polymerase chain reaction (PCR) was performed to determine the distribution of hAMSCs in multiple tissues including lung, kidney and muscle after infusion of hAMSCs for 24 h, 1 week and 1 month in mice aiming to investigate whether hAMSCs retain locally active roles after intravenous administration. Improvement of hypercoagulable condition involving correction of platelet, D-dimer and plasminogen levels, skin regeneration and pain alleviation were revealed after hAMSC administration over one-year period. Skin biopsy pathology suggested regenerative tissues after 1 month hAMSC application and full epidermal regeneration after 20 months hAMSC treatment. PCR analysis indicated that hAMSCs were homing in lung, kidney and muscle tissues of mice even until tail vein injection of hAMSCs for 1 month. We propose that hypercoagulability is a promising therapeutic target of calciphylaxis patients, which can be effectively improved by hAMSC treatment.


Assuntos
Calciofilaxia , Células-Tronco Mesenquimais , Trombofilia , Humanos , Camundongos , Animais , Âmnio , Calciofilaxia/etiologia , Calciofilaxia/terapia , Qualidade de Vida , Trombofilia/etiologia
4.
Front Med ; 17(2): 330-338, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36645631

RESUMO

Clouston syndrome (OMIM #129500), also known as hidrotic ectodermal dysplasia type 2, is a rare autosomal dominant skin disorder. To date, four mutations in the GJB6 gene, G11R, V37E, A88V, and D50N, have been confirmed to cause this condition. In previous studies, the focus has been mainly on gene sequencing, and there has been a lack of research on clinical manifestations and pathogenesis. To confirm the diagnosis of this pedigree at the molecular level and summarize and analyse the clinical phenotype of patients and to provide a basis for further study of the pathogenesis of the disease, we performed whole-exome and Sanger sequencing on a large Chinese Clouston syndrome pedigree. Detailed clinical examination included histopathology, hair microscopy, and scanning electron microscopy. We found a novel heterozygous missense variant (c.134G>C:p.G45A) for Clouston syndrome. We identified a new clinical phenotype involving all nail needling pain in all patients and found a special honeycomb hole structure in the patients' hair under scanning electron microscopy. Our data reveal that a novel variant (c.134G>C:p.G45A) plays a likely pathogenic role in this pedigree and highlight that genetic testing is necessary for the diagnosis of Clouston syndrome.


Assuntos
Conexinas , Displasia Ectodérmica , Humanos , Conexina 30/genética , Conexinas/genética , População do Leste Asiático , Displasia Ectodérmica/genética , Displasia Ectodérmica/diagnóstico , Displasia Ectodérmica/patologia , Fenótipo
5.
Phytomedicine ; 109: 154563, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36610148

RESUMO

BACKGROUND: Cachexia is a multifactorial debilitating syndrome that is responsible for 22% of mortality among cancer patients, and there are no effective therapeutic agents available. Curcumin, a polyphenolic compound derived from the plant turmeric, has been shown to have anti-inflammatory, antioxidant, anti-autophagic, and antitumor activities. However, its function in cancer cachexia remains largely unexplored. PURPOSE: This study aimed to elucidate the mechanisms by which curcumin improves adipose atrophy in cancer cachexia. METHODS: C26 tumor-bearing BALB/c mice and ß3-adrenoceptor agonist CL316243 stimulated BALB/c mice were used to observe the therapeutic effects of curcumin on the lipid degradation of cancer cachexia in vivo. The effects of curcumin in vitro were examined using mature 3T3-L1 adipocytes treated with a conditioned medium of C26 tumor cells or CL316243. RESULTS: Mice with C26 tumors and cachexia were protected from weight loss and adipose atrophy by curcumin (50 mg/kg, i.g.). Curcumin significantly reduced serum levels of free fatty acids and increased triglyceride levels. In addition, curcumin significantly inhibited PKA and CREB activation in the adipose tissue of cancer cachectic mice. Curcumin also ameliorated CL316243-induced adipose atrophy and inhibited hormone-mediated PKA and CREB activation in mice. Moreover, the lipid droplet degradation induced by C26 tumor cell conditioned medium in mature 3T3-L1 adipocytes was ameliorated by curcumin (20 µM) treatment. Curcumin also improved the lipid droplet degradation of mature 3T3-L1 adipocytes induced by CL316243. CONCLUSION: Curcumin might be expected to be a therapeutic supplement for cancer cachexia patients, primarily through inhibiting adipose tissue loss via the cAMP/PKA/CREB signaling pathway.


Assuntos
Curcumina , Neoplasias , Camundongos , Animais , Caquexia/tratamento farmacológico , Caquexia/etiologia , Caquexia/metabolismo , Curcumina/farmacologia , Meios de Cultivo Condicionados/farmacologia , Transdução de Sinais , Lipólise , Obesidade , Atrofia
6.
Cells ; 11(19)2022 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-36230949

RESUMO

Cachexia is characterized by progressive weight loss accompanied by the loss of specific skeletal muscle and adipose tissue. Increased lactate production, either due to the Warburg effect from tumors or accelerated glycolysis effects from cachectic muscle, is the most dangerous factor for cancer cachexia. This study aimed to explore the efficiency of 2-deoxy-D-glucose (2-DG) in blocking Cori cycle activity and its therapeutic effect on cachexia-associated muscle wasting. A C26 adenocarcinoma xenograft model was used to study cancer cachectic metabolic derangements. Tumor-free lean mass, hindlimb muscle morphology, and fiber-type composition were measured after in vivo 2-DG administration. Activation of the ubiquitin-dependent proteasome pathway (UPS) and autophagic-lysosomal pathway (ALP) was further assessed. The cachectic skeletal muscles of tumor-bearing mice exhibited altered glucose and lipid metabolism, decreased carbohydrate utilization, and increased lipid ß-oxidation. Significantly increased gluconeogenesis and decreased ketogenesis were observed in cachectic mouse livers. 2-DG significantly ameliorated cancer cachexia-associated muscle wasting and decreased cachectic-associated lean mass levels and fiber cross-sectional areas. 2-DG inhibited protein degradation-associated UPS and ALP, increased ketogenesis in the liver, and promoted ketone metabolism in skeletal muscle, thus enhancing mitochondrial bioenergetic capacity. 2-DG effectively prevents muscle wasting by increasing ATP synthesis efficiency via the ketone metabolic pathway and blocking the abnormal Cori cycle.


Assuntos
Adenocarcinoma , Neoplasias Musculares , Adenocarcinoma/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Caquexia/etiologia , Caquexia/metabolismo , Desoxiglucose/metabolismo , Desoxiglucose/farmacologia , Glucose/metabolismo , Humanos , Cetonas/farmacologia , Lactatos/metabolismo , Lipídeos/farmacologia , Camundongos , Neoplasias Musculares/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitinas/metabolismo
7.
Environ Pollut ; 313: 120017, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36007796

RESUMO

Epidemiological studies have indicated that exposure to ambient air-borne fine particulate matter (PM2.5) is associated with many cardiopulmonary diseases; however, the underlying pathological mechanisms of PM2.5-induced lung injury remain unknown. In this study, we aimed to assess the impact of acute or prolonged exposure to water-insoluble fractions of PM2.5 (PM2.5 particulate) on lung injury and its molecular mechanisms. Balb/c mice were randomly exposed to PM2.5 once (acute exposure) or once every three days for a total of 6 times (prolonged exposure). Lung, BALF and blood samples were collected, and pulmonary pathophysiological alterations were analyzed. Nrf2 knockout mice were adapted to assess the involvement of Nrf2 in lung injury, and transcriptomic analysis was performed to delineate the mechanisms. Through transcriptomic analysis and validation of Nrf2 knockout mice, we found that acute exposure to PM2.5 insoluble particulates induced neutrophil infiltration-mediated airway inflammation, whereas prolonged exposure to PM2.5 insoluble particulate triggered lung fibrosis by decreasing the transcriptional activity of Nrf2, which resulted in the downregulated expression of antioxidant-related genes. In response to secondary LPS exposure, prolonged PM2.5 exposure induced more severe lung injury, indicating that prolonged PM2.5 exposure induced Nrf2 inhibition weakened its antioxidative defense capacity against oxidative stress injury, leading to the formation of pulmonary fibrosis and increasing its susceptibility to secondary bacterial infection.


Assuntos
Lesão Pulmonar Aguda , Lesão Pulmonar , Fibrose Pulmonar , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Animais , Antioxidantes/metabolismo , Lipopolissacarídeos , Pulmão/metabolismo , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/fisiologia , Material Particulado/metabolismo , Material Particulado/toxicidade , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Água/metabolismo
8.
J Mol Cell Biol ; 14(2)2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35142858

RESUMO

Calciphylaxis is a rare disease characterized histologically by microvessel calcification and microthrombosis, with high mortality and no proven therapy. Here, we reported a severe uremic calciphylaxis patient with progressive skin ischemia, large areas of painful malodorous ulcers, and mummified legs. Because of the worsening symptoms and signs refractory to conventional therapies, treatment with human amnion-derived mesenchymal stem cells (hAMSCs) was approved. Preclinical release inspections of hAMSCs, efficacy, and safety assessment, including cytokine secretory ability, immunocompetence, tumorigenicity, and genetics analysis in vitro, were introduced. We further performed acute and long-term hAMSC toxicity evaluations in C57BL/6 mice and rats, abnormal immune response tests in C57BL/6 mice, and tumorigenicity tests in neonatal Balbc-nu nude mice. After the preclinical research, the patient was treated with hAMSCs by intravenous and local intramuscular injection and external supernatant application to the ulcers. When followed up to 15 months, the blood-based markers of bone and mineral metabolism improved, with skin soft tissue regeneration and a more favorable profile of peripheral blood mononuclear cells. Skin biopsy after 1-month treatment showed vascular regeneration with mature noncalcified vessels within the dermis, and 20 months later, the re-epithelialization restored the integrity of the damaged site. No infusion or local treatment-related adverse events occurred. Thus, this novel long-term intravenous combined with local treatment with hAMSCs warrants further investigation as a potential regenerative treatment for uremic calciphylaxis due to effects of inhibiting vascular calcification, stimulating angiogenesis and myogenesis, anti-inflammatory and immune modulation, multidifferentiation, re-epithelialization, and restoration of integrity.


Assuntos
Calciofilaxia , Células-Tronco Mesenquimais , Âmnio , Animais , Calciofilaxia/complicações , Calciofilaxia/terapia , Humanos , Leucócitos Mononucleares , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Ratos , Úlcera/metabolismo
9.
Environ Sci Pollut Res Int ; 29(10): 13983-13997, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34601671

RESUMO

Exposure to airborne urban particles is a contributing factor for the development of multiple types of respiratory diseases; its pathological role as a cause of lung injury is still unclear. In this study, PM2.5 soluble extract was collected, and its toxicological effect on lung pathological changes was examined. To assess its pathological mechanism, Human Monocyte-Like Cell Line, THP-1, and mouse macrophage, RAW264.7, were used to determine the effects of PM2.5 soluble extract on cell toxicity, phagocytosis, and transcriptome. We found that PM2.5 soluble extract exposure activated NF-κB and MAPK signaling pathways, then induces the production of pro-inflammatory cytokines. RNA-seq results showed that the transcription profiles, including 1213 genes, have been changed in responses to PM2.5 exposure. Additionally, PM2.5 led to phagocytic dysfunction, which may exacerbate the cause of lung injury. Exposure to PM2.5 soluble extract triggers the death of respiratory macrophages, impairs its phagocytosis capacity, thus delaying the inflammatory cell clearance in the lung, which results in chronic lung injury.


Assuntos
Lesão Pulmonar , Animais , Pulmão , Lesão Pulmonar/induzido quimicamente , Macrófagos , Camundongos , Material Particulado/toxicidade , Fagocitose , Extratos Vegetais
10.
J Cell Mol Med ; 25(22): 10504-10520, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34632719

RESUMO

Tuberculosis (TB) remains a worldwide healthcare concern, and the exploration of the host-pathogen interaction is essential to develop therapeutic modalities and strategies to control Mycobacterium tuberculosis (M.tb). In this study, RNA sequencing (transcriptome sequencing) was employed to investigate the global transcriptome changes in the macrophages during the different strains of M.tb infection. THP-1 cells derived from macrophages were exposed to the virulent M.tb strain H37Rv (Rv) or the avirulent M.tb strain H37Ra (Ra), and the M.tb BCG vaccine strain was used as a control. The cDNA libraries were prepared from M.tb-infected macrophages and then sequenced. To assess the transcriptional differences between the expressed genes, the bioinformatics analysis was performed using a standard pipeline of quality control, reference mapping, differential expression analysis, protein-protein interaction (PPI) networks, gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Q-PCR and Western blot assays were also performed to validate the data. Our findings indicated that, when compared to BCG or M.tb H37Ra infection, the transcriptome analysis identified 66 differentially expressed genes in the M.tb H37Rv-infected macrophages, out of which 36 genes were up-regulated, and 30 genes were down-regulated. The up-regulated genes were associated with immune response regulation, chemokine secretion, and leucocyte chemotaxis. In contrast, the down-regulated genes were associated with amino acid biosynthetic and energy metabolism, connective tissue development and extracellular matrix organization. The Q-PCR and Western blot assays confirmed increased expression of pro-inflammatory factors, altered energy metabolic processes, enhanced activation of pro-inflammatory signalling pathways and increased pyroptosis in H37Rv-infected macrophage. Overall, our RNA sequencing-based transcriptome study successfully identified a comprehensive, in-depth gene expression/regulation profile in M.tb-infected macrophages. The results demonstrated that virulent M.tb strain H37Rv infection triggers a more severe inflammatory immune response associated with increased tissue damage, which helps in understanding the host-pathogen interaction dynamics and pathogenesis features in different strains of M.tb infection.


Assuntos
Vacina BCG/imunologia , Perfilação da Expressão Gênica , Macrófagos/metabolismo , Mycobacterium tuberculosis/imunologia , Transcriptoma , Biologia Computacional/métodos , Regulação da Expressão Gênica , Ontologia Genética , Redes Reguladoras de Genes , Sequenciamento de Nucleotídeos em Larga Escala , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Macrófagos/imunologia , Macrófagos/microbiologia , Mycobacterium tuberculosis/classificação , Transdução de Sinais , Células THP-1 , Tuberculose/genética , Tuberculose/imunologia , Tuberculose/microbiologia
11.
Br J Pharmacol ; 178(22): 4485-4500, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34265073

RESUMO

BACKGROUND AND PURPOSE: Cancer cachexia is a common cause of death among cancer patients with no currently effective treatment available. In animal models, aberrant activation of STAT3 in skeletal muscle contributes to muscle wasting. However, clinically the factors regulating STAT3 activation and the molecular mechanisms involved remain incompletely understood. EXPERIMENTAL APPROACH: The expression of HSP90 and the activation of STAT3 were detected in muscle from the patients with cancer cachexia or the tumour-bearing cachectic mice. HSP90 inhibitors, including 17DMAG (alvespimycin) and PU-H71, were administered to cachexic mice and cachexia parameters, weight loss, food intake, survival rate, body composition, serum metabolites, muscle wasting pathology and catabolic activation were analysed. The co-culture of C2C12 myotube cells with C26 conditioned media was performed to investigate the pathological mechanism involved in catabolic muscle wasting. The roles of HSP90, STAT3 and FOXO1 in myotube atrophy were explored via overexpression or knockdown. RESULTS: An enhanced interaction between activated STAT3 and HSP90 in the skeletal muscle of cancer cachexia patients, is a crucial for the development of cachectic muscle wasting. HSP90 inhibitors 17DMAG and PU-H71 alleviated the muscle wasting in C26 and models or the myotube atrophy of C2C12 cells induced by C26 conditional medium. Prolonged STAT3 activation transactivated FOXO1 by binding directly to its promoter and triggered the muscle wasting in a FOXO1-dependent manner in muscle cells. CONCLUSION AND IMPLICATIONS: The HSP90/STAT3/FOXO1 axis plays a critical role in cachectic muscle wasting, which might be a potential therapeutic target for the treatment of cancer cachexia.


Assuntos
Caquexia , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Neoplasias , Fator de Transcrição STAT3 , Animais , Caquexia/tratamento farmacológico , Caquexia/etiologia , Humanos , Camundongos , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Fator de Transcrição STAT3/metabolismo
12.
Cell Death Dis ; 12(7): 652, 2021 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-34175899

RESUMO

Cancer cachexia is a multifactorial metabolic syndrome that causes up to 20% of cancer-related deaths. Muscle atrophy, the hallmark of cancer cachexia, strongly impairs the quality of life of cancer patients; however, the underlying pathological process is still poorly understood. Investigation of the disease pathogenesis largely relies on cachectic mouse models. In our study, the transcriptome of the cachectic gastrocnemius muscle in the C26 xenograft model was integrated and compared with that of 5 more different datasets. The bioinformatic analysis revealed pivotal gene ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways of the disease, and the key genes were validated. Construction of the protein-protein interaction network and the comparison of pathways enriched in cancer cachexia with 5 other muscle atrophy models revealed Ddit4 (DNA damage-inducible transcript 4), as a key protein in cancer cachexia. The higher expression of Ddit4 in cachectic muscle was further validated in animal models and cachectic cancer patients. Further study revealed that p38 induced the expression of Ddit4, which in turn inhibited the mTOR pathway in atrophic cells.


Assuntos
Adenocarcinoma/complicações , Caquexia/genética , Neoplasias do Colo/complicações , Perfilação da Expressão Gênica , Músculo Esquelético/metabolismo , Fatores de Transcrição/genética , Transcriptoma , Animais , Caquexia/etiologia , Caquexia/metabolismo , Caquexia/patologia , Linhagem Celular Tumoral , Bases de Dados Genéticas , Modelos Animais de Doenças , Redes Reguladoras de Genes , Humanos , Masculino , Camundongos Endogâmicos BALB C , Músculo Esquelético/patologia , Fosforilação , Mapas de Interação de Proteínas , Transdução de Sinais , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
13.
J Mol Med (Berl) ; 99(7): 1009-1020, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33835216

RESUMO

IL-6 has been suggested to function as an autocrine mitogen in the psoriatic epidermis. The biological activity of IL-6 relies on interactions with its receptors, including the membrane-bound IL-6 receptor (mIL-6R) and soluble IL-6 receptor (sIL-6R). Our study presents data showing that the levels of plasma IL-6 and sIL-6R were elevated in psoriatic patients. Genotyping of two single-nucleotide polymorphisms (SNPs) in IL-6R (rs4845617 and rs2228145) demonstrated that the SNP IL-6R (rs4845617) rather than IL-6R (rs2228145) shows a significant association with psoriasis (P = 0.006). To verify the functions of sIL-6R, cultured keratinocytes and imiquimod (IMQ)-induced psoriatic model mice were treated with sIL-6R. We found that the presence of sIL-6R in the HaCaT cell culture medium enhanced the IL-6-induced Stat3 activation, which resulted in abnormal keratinocyte proliferation and aberrant differentiation. Furthermore, the application of sIL-6R in vivo accelerated the pathological development of the disease. Our results demonstrate for the first time that genetic polymorphisms in the IL-6R gene are associated with psoriasis disease phenotypes in a Chinese psoriatic patient population; sIL-6R-mediated trans-signaling pathway plays a pivotal role in keratinocyte proliferation and differentiation, suggesting potential therapeutics for psoriasis. KEY MESSAGES: Patients with psoriasis displayed higher levels of IL-6 and sIL-6R compared with healthy controls. Analysis of genotypes revealed that IL-6R rs4845617 GG genotype associated with the risk of psoriasis. Supplement of sIL-6R further enhanced IL-6-induced Stat3 activation in keratinocytes. In vivo administration of sIL-6R accelerated, whereas sgp130FC alleviated, the pathological development of psoriasis.


Assuntos
Interleucina-6/sangue , Psoríase/sangue , Receptores de Interleucina-6/sangue , Adolescente , Adulto , Idoso , Animais , Povo Asiático/genética , Linhagem Celular , Receptor gp130 de Citocina/genética , Feminino , Predisposição Genética para Doença , Humanos , Queratinócitos/metabolismo , Queratinócitos/patologia , Masculino , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade , Gravidade do Paciente , Polimorfismo de Nucleotídeo Único , Psoríase/genética , Psoríase/patologia , Receptores de Interleucina-6/genética , Transdução de Sinais , Adulto Jovem
14.
Front Pharmacol ; 12: 724192, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35095481

RESUMO

Lung cancer is one of the most common malignant cancers worldwide. Searching for specific cancer targets and developing efficient therapies with lower toxicity is urgently needed. HPS90 is a key chaperon protein that has multiple client proteins involved in the development of cancer. In this study, we investigated the transcriptional levels of HSP90 isoforms in cancerous and normal tissues of lung cancer patients in multiple datasets. The higher expression of HSP90AA1 in cancer tissues correlated with poorer overall survival was observed. The higher levels of transcription and expression of HSP90AA1 and the activity of AKT1/ERK pathways were confirmed in lung cancer patient tissues. In both human and mouse lung cancer cell lines, knocking down HSP90AA1 promoted cell apoptosis through the inhibition of the pro-survival effect of AKT1 by decreasing the phosphorylation of itself and its downstream factors of mTOR and BAD, as well as downregulating Mcl1, Bcl-xl, and Survivin. The knockdown also suppressed lung cancer cell proliferation by inhibiting ERK activation and downregulating CyclinD1 expression. The treatment of 17-DMAG, an HSP90 inhibitor, recaptured these effects in vitro and inhibited tumor cell growth, and induced apoptosis without obvious side effects in lung tumor xenograft mouse models. This study suggests that targeting HSP90 by 17-DMAG could be a potential therapy for the treatment of lung cancer.

15.
Photodiagnosis Photodyn Ther ; 33: 102047, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33022419

RESUMO

Penile verrucous carcinoma exhibits a high potential for recurrence. Traditional treatment for penile verrucous carcinoma is radical surgery. Extensive resection generally leads to the loss of the patient's sexual function and limits the tolerance for additional additional surgical resection. Herein, we present a case of penile verrucous carcinoma, who achieved complete remission after 3 sessions of PDT and 6 months Acitretin. There was no recurrence at 12 months of follow-up. This case suggests that photodynamic therapy combined with acitretin is a treatment option for penile verrucous carcinoma.


Assuntos
Carcinoma Verrucoso , Fotoquimioterapia , Acitretina/uso terapêutico , Carcinoma Verrucoso/tratamento farmacológico , Humanos , Masculino , Recidiva Local de Neoplasia/tratamento farmacológico , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/uso terapêutico
16.
Int J Mol Med ; 42(6): 3073-3082, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30280183

RESUMO

Cutaneous ischemia­reperfusion (I/R) injury is one of the most crucial problems in flap surgery, which affects the survival of the skin flap and patient prognosis, luteolin, a plant derived flavonoid, has previously been shown to exert a variety of beneficial effects for reducing I/R injury in several organs. The aim of the present study was to evaluate the anti­inflammatory and anti­oxidative stress effects of luteolin on cutaneous I/R injury. The in vitro study were performed using a permanent human immortalized epidermal keratinocyte cell line (HaCaT), cells were cultured in the presence of luteolin and were then treated with hydrogen peroxide, the cell viability, mitochondrial membrane potential and the cell survival/apoptosis related signaling pathway activation were assessed to investigate the cytoprotective effects of luteolin. For in vivo experiments, skin flap I/R injury animal model was established in Sprague­Dawley rats, by measuring the area of flap survival, analyzing the expression of pro­inflammatory cytokine and evaluation of the histological changes in the skin tissue, the protective effects of luteolin on skin I/R injury were investigated. The function of protein kinase B (AKT) and heme oxygenase­1 (HO­1) activation on luteolin mediated I/R injury protection was assessed by administration of phosphoinositide­3­kinase/AKT inhibitor LY294002 and HO­1 inhibitor ZNPP. The results showed that luteolin treatment significantly increased the viability of HaCaT cells upon exposure to hydrogen peroxide, and the administration of luteolin in vivo significantly improved skin flap survival in the I/R injury rat model. The mechanisms underlying these beneficial effects included increased phosphoinositide­3­kinase/protein kinase B activation, improved expression of antioxidant enzyme, and scavenging the cytotoxic effects of reactive oxygen species (ROS). Taken together, the results suggested that luteolin preconditioning yielded significant protection against cutaneous I/R injury by protecting skin keratinocytes from ROS­induced damage.


Assuntos
Luteolina/farmacologia , Substâncias Protetoras/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Traumatismo por Reperfusão/etiologia , Traumatismo por Reperfusão/metabolismo , Dermatopatias/etiologia , Dermatopatias/metabolismo , Animais , Antioxidantes , Apoptose/efeitos dos fármacos , Biomarcadores , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Humanos , Peróxido de Hidrogênio/farmacologia , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Luteolina/química , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Estresse Oxidativo , Fosfatidilinositol 3-Quinases/metabolismo , Substâncias Protetoras/química , Ratos , Espécies Reativas de Oxigênio/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/patologia , Transdução de Sinais/efeitos dos fármacos , Dermatopatias/tratamento farmacológico , Dermatopatias/patologia
17.
Cell Death Dis ; 9(8): 787, 2018 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-30013076

RESUMO

The PDF and HTML versions of the article have been updated to include the Creative Commons Attribution 4.0 International License information.

19.
Photodiagnosis Photodyn Ther ; 21: 128-129, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29197644

RESUMO

Rosai-Dorfman disease is a rare inflammatory cutaneous histiocytosis with the involvement of lymph nodes. Therapeutic interventions include thalidomide, corticosteroids, surgical excision and radiotherapy . In this article, we report a case that was successfully treated with ALA photodynamic therapy.


Assuntos
Ácido Aminolevulínico/uso terapêutico , Histiocitose Sinusal/tratamento farmacológico , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/uso terapêutico , Adulto , Feminino , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA