Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Biol Int ; 47(8): 1344-1353, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36987947

RESUMO

Bufalin, a major cardiotonic compound of the traditional Chinese medicine Chanshu has been used for cancer treatment for several years. However, the molecular mechanisms of Bufalin-induced autophagy in osteosarcoma (OS) is not fully understood. In the present study, it was shown that Bufalin induced crosstalk between apoptosis and autophagy, which resulted in OS cell death. Mechanistically, Bufalin induced autophagy by increased the ratio of microtubule-associated protein 1A/1B-light chain 3 (LC3)-II/LC3-I, and inducing apoptosis via the caspase-dependent pathway. Inhibition of autophagy promoted Bufalin-induced cell death. In contrast, suppression of apoptosis enhanced Bufalin-induced autophagy. In addition, it was found that Bufalin activated the Ca2+ /calmodulin-dependent protein kinase ß/AMPK/Beclin1 pathway, which resulted in induction of autophagy. These findings provide a mechanistic understanding of the means by which Bufalin mediates autophagy and apoptosis in OS cells.


Assuntos
Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina , Osteossarcoma , Humanos , Proteína Beclina-1 , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Cálcio/metabolismo , Linhagem Celular Tumoral , Transdução de Sinais , Apoptose , Autofagia , Osteossarcoma/tratamento farmacológico , Osteossarcoma/metabolismo
2.
Food Funct ; 14(6): 2684-2697, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36752162

RESUMO

Chlorogenic acid (CGA) and epigallocatechin-3-gallate (EGCG) are major polyphenolic constituents of coffee and green tea with beneficial health properties. In this study, we evaluated the gut protecting effect of CGA and EGCG, alone or in combination, on D-galactose-induced aging mice. CGA plus EGCG more effectively improved the cognition deficits and protected the gut barrier function, compared with the agents alone. Specifically, CGA plus EGCG prevented the D-galactose mediated reactive oxygen species accumulation by increasing the total antioxidant capacity, reducing the levels of malondialdehyde, and suppressing the activity of the antioxidant enzymes superoxide dismutase and catalase. In addition, supplementation of CGA and EGCG suppressed gut inflammation by reducing the levels of the proinflammatory cytokines TNFα, IFNγ, IL-1ß and IL-6. Moreover, CGA and EGCG modulated the gut microbiome altered by D-galactose. For instance, CGA plus EGCG restored the Firmicutes/Bacteroidetes ratio of the aging mice to control levels. Furthermore, CGA plus EGCG decreased the abundance of Lactobacillaceae, Erysipelotrichaceae, and Deferribacteraceae, while increased the abundance of Lachnospiraceae, Muribaculaceae, and Rikenellaceae, at the family level. In conclusion, CGA in combination with EGCG ameliorated the gut alterations induced by aging, in part, through antioxidant and anti-inflammatory effects, along with its gut microbiota modulatory capacity.


Assuntos
Antioxidantes , Catequina , Camundongos , Animais , Antioxidantes/farmacologia , Ácido Clorogênico/farmacologia , Galactose/efeitos adversos , Envelhecimento , Catequina/farmacologia
3.
Food Funct ; 12(22): 11671-11685, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34730149

RESUMO

Cyclophosphamide (CTX) is an antitumor drug commonly used to treat various cancer types. Unfortunately, its toxic side effects, including gastrointestinal (GI) toxicity, affect treatment compliance and patients' prognosis. Thus, there is a critical need of evaluating strategies that may improve the associated GI toxicity induced by CTX. In this work, we evaluated the capacity of epigallocatechin-3-gallate (EGCG), a major constituent of green tea, to improve the recovery of gut injury induced by CTX in mice. Treatment with CTX for 5 days severely damaged the intestinal structure, increased immune-related cytokines (TNFα, IL-10 and IL-21), reduced the expression levels of tight junction proteins (ZO-1, occludin, claudin-1), induced reactive oxygen species, altered the composition of gut microbiota, and reduced short chain fatty acid levels. EGCG treatment, starting one day after the last CTX dose, significantly improved the intestinal structure, ameliorated gut permeability, and restored ZO-1, occludin and claudin-1 levels. Moreover, EGCG reduced TNFα, IL-10 and IL-21 levels and decreased oxidative stress by regulating the activities of the antioxidant enzymes catalase, superoxide dismutase and glutathione peroxidase. Finally, EGCG treatment restored the composition of gut microbiota and the levels of the short chain fatty acids. In conclusion, these findings indicate that EGCG may function as an effective bioactive compound to minimize CTX-induced GI tract toxicity.


Assuntos
Catequina/análogos & derivados , Ciclofosfamida/efeitos adversos , Microbioma Gastrointestinal/efeitos dos fármacos , Enteropatias/metabolismo , Junções Íntimas/efeitos dos fármacos , Animais , Catequina/farmacologia , Disbiose/metabolismo , Inflamação/metabolismo , Enteropatias/induzido quimicamente , Masculino , Camundongos , Camundongos Endogâmicos ICR
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA