Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 12: 769011, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35069542

RESUMO

Asthma patients may increase their susceptibility to SARS-CoV-2 infection and the poor prognosis of coronavirus disease 2019 (COVID-19). However, anti-COVID-19/asthma comorbidity approaches are restricted on condition. Existing evidence indicates that luteolin has antiviral, anti-inflammatory, and immune regulation capabilities. We aimed to evaluate the possibility of luteolin evolving into an ideal drug and explore the underlying molecular mechanisms of luteolin against COVID-19/asthma comorbidity. We used system pharmacology and bioinformatics analysis to assess the physicochemical properties and biological activities of luteolin and further analyze the binding activities, targets, biological functions, and mechanisms of luteolin against COVID-19/asthma comorbidity. We found that luteolin may exert ideal physicochemical properties and bioactivity, and molecular docking analysis confirmed that luteolin performed effective binding activities in COVID-19/asthma comorbidity. Furthermore, a protein-protein interaction network of 538 common targets between drug and disease was constructed and 264 hub targets were obtained. Then, the top 6 hub targets of luteolin against COVID-19/asthma comorbidity were identified, namely, TP53, AKT1, ALB, IL-6, TNF, and VEGFA. Furthermore, the enrichment analysis suggested that luteolin may exert effects on virus defense, regulation of inflammation, cell growth and cell replication, and immune responses, reducing oxidative stress and regulating blood circulation through the Toll-like receptor; MAPK, TNF, AGE/RAGE, EGFR, ErbB, HIF-1, and PI3K-AKT signaling pathways; PD-L1 expression; and PD-1 checkpoint pathway in cancer. The possible "dangerous liaison" between COVID-19 and asthma is still a potential threat to world health. This research is the first to explore whether luteolin could evolve into a drug candidate for COVID-19/asthma comorbidity. This study indicated that luteolin with superior drug likeness and bioactivity has great potential to be used for treating COVID-19/asthma comorbidity, but the predicted results still need to be rigorously verified by experiments.


Assuntos
Anti-Inflamatórios/metabolismo , Antioxidantes/metabolismo , Antivirais/metabolismo , Asma/epidemiologia , Asma/metabolismo , COVID-19/epidemiologia , COVID-19/metabolismo , Fatores Imunológicos/metabolismo , Luteolina/metabolismo , SARS-CoV-2/metabolismo , Anti-Inflamatórios/química , Antioxidantes/química , Antivirais/química , Comorbidade , Biologia Computacional/métodos , Descoberta de Drogas/métodos , Humanos , Fatores Imunológicos/química , Interleucina-6/metabolismo , Luteolina/química , Simulação de Acoplamento Molecular , Mapas de Interação de Proteínas/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Albumina Sérica Humana/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
2.
Biomed Pharmacother ; 112: 108647, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30797149

RESUMO

Cisplatin remains the standard first-line chemotherapeutic agent in the treatment of many types of cancers, but its clinical application is hindered by its severe nephrotoxicity. Previous studies reported that scutellarin enhanced the anti-cancer activity of cisplatin in lung cancer cells, with no confirmation on cisplatin-induced renal damage. Here, we investigated the nephroprotective effect of scutellarin on cisplatin-induced renal injury and its underlying mechanisms. Renal function, histological change, inflammation, apoptosis, autophagy and involved pathways were investigated. Pretreatment with scutellarin prevented cisplatin-induced decline of renal function including BUN, CRE, and histological damage. Scutellarin also reduced renal inflammation by suppressing the levels of pro-inflammatory cytokine, TNF-α and IL-6. Similarly, scutellarin administration inhibited apoptosis triggered by cisplatin through reducing the expressions of Cleaved caspase-3, Cleaved PARP, p53, and the ratio of Bax/Bcl-2. Moreover, scutellarin prevented cisplatin-induced inhibition of autophagy via enhancing LC3-II/LC3-I and Atg7, and inhibition of p62. Of note, the activations of JNK, ERK, p38 and stat3 induced by cisplatin were strikingly attenuated in scutellarin-treated mice. Thus, these results provide compelling evidence that scutellarin is a novel nephroprotectant against cisplatin-induced renal toxicity.


Assuntos
Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/prevenção & controle , Apigenina/uso terapêutico , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Cisplatino/toxicidade , Glucuronatos/uso terapêutico , Injúria Renal Aguda/patologia , Animais , Apigenina/farmacologia , Apoptose/fisiologia , Autofagia/fisiologia , Glucuronatos/farmacologia , Inflamação/induzido quimicamente , Inflamação/patologia , Inflamação/prevenção & controle , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Substâncias Protetoras/farmacologia , Substâncias Protetoras/uso terapêutico , Distribuição Aleatória
3.
Front Pharmacol ; 9: 92, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29487530

RESUMO

Cisplatin, as the first-line anti-tumor agent, is widely used for treatment of a variety of malignancies including non-small cell lung cancer (NSCLC). However, the acquired resistance has been a major obstacle for the clinical application. Scutellarin is a active flavone extracted from Erigeron breviscapus Hand-Mazz that has been shown to exhibit anticancer activities on various types of tumors. Here, we reported that scutellarin was capable of sensitizing A549/DDP cells to cisplatin by enhancing apoptosis and autophagy. Mechanistic analyses indicated that cisplatin-induced caspase-3-dependent apoptosis was elevated in the presence of scutellarin through activating extracellular signal-regulated kinases (ERK)-mediated p53 pathway. Furthermore, scutellarin also promoted cisplatin-induced cytotoxic autophagy, downregulated expression of p-AKT and c-met. Deficiency of c-met reduced p-AKT level, and inhibition of p-AKT or c-met improved autophagy in A549/DDP cells. Interestingly, loss of autophagy attenuated the synergism of this combination. In vivo, the co-treatment of cisplatin and scutellarin notably reduced the tumor size when compared with cisplatin treatment alone. Notably, scutellarin significantly reduced the toxicity generated by cisplatin in tumor-bearing mice. This study identifies the unique role of scutellarin in reversing cisplatin resistance through apoptosis and autophagy, and suggests that combined cisplatin and scutellarin might be a novel therapeutic strategy for patients with NSCLC.

4.
RSC Adv ; 8(34): 18926-18937, 2018 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-35539637

RESUMO

Alzheimer's disease (AD), a neurodegenerative disorder, is marked by the accumulation of amyloid-ß (Aß) and neuroinflammation which promote the development of AD. Geniposide, the main ingredient isolated from Chinese herbal medicine Gardenia jasminoides Ellis, has a variety of pharmacological functions such as anti-apoptosis and anti-inflammatory activity. Hence, we estimated the inflammatory cytotoxicity caused by Aß25-35 and the neuroprotective effects of geniposide in HT22 cells. In this research, following incubation with Aß25-35 (40 µM, 24 h) in HT22 cells, the methylthiazolyl tetrazolium (MTT) and lactate dehydrogenase (LDH) release assays showed that the cell survival rate was significantly decreased. In contrast, the reactive oxygen species (ROS) assay indicated that Aß25-35 enhanced ROS accumulation and apoptosis showed in both hoechst 33342 staining and annexin V-FITC/PI double staining. And then, immunofluorescence test revealed that Aß25-35 promoted p65 to transfer into the nucleus indicating p65 was activated by Aß25-35. Moreover, western blot analysis proved that Aß25-35 increased the expression of nitric oxide species (iNOS), tumor necrosis factor-α (TNF-α), cyclooxygenase-2 (COX-2) and interleukin-1ß (IL-1ß). Simultaneously, Aß25-35 also promoted the expression of toll-like receptor 4 (TLR4), p-p65 and p-IκB-α accompanied with the increase in the level of beta-secretase 1 (BACE1) and caspase-3 which further supported Aß25-35 induced apoptosis and inflammation. Fortunately, this up-regulation was reversed by geniposide. In conclusion, our data suggest that geniposide can alleviate Aß25-35-induced inflammatory response to protect neurons, which is possibly involved with the inhibition of the TLR4/NF-κB pathway in HT22 cells. Geniposide may be the latent treatment for AD induced by neuroinflammation and apoptosis.

5.
Int Immunopharmacol ; 46: 146-155, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28284148

RESUMO

Usnic acid (UA) can be found in certain lichen species. Growing evidence suggests that UA possesses antitumoral, antioxidative and anti-inflammatory activities. Bleomycin (BLM) is widely used in the treatment of malignant ascites, however, it unexpectedly causes pulmonary fibrosis (PF). Researches show that excessive inflammatory response and oxidative stress in lung tissue is conspicuous causes of BLM-induced PF. Here we investigated mechanism underlying the effect-enhancing and toxicity-reducing activity of UA on H22-bearing mice treated with BLM. UA combined with BLM was significantly more effective than BLM alone in inhibiting the tumor growth, arresting the cell cycle at G0/G1 phase, and promoting the cleaved caspase-3 and cleaved caspase-8 activities to induce cancer cellular apoptosis. The mechanism may be associated with the transcriptional regulation of p53/p21/Cyclin pathway. Furthermore, UA effectively moderated the histopathological changes, reduced the content of MDA, HYP, TNF-α, IL-1ß, IL-6 and TGF-ß1, and increased the level of SOD when combined with BLM in lung tissues of H22-bearing mice, which was believed to be related to the inhibition on the protein level of p-Smad2/3 and enhancement of Smad7 expression. These findings suggested that UA might be a potential effect-enhancing and toxicity-reducing candidate for BLM in the treatment of malignant ascites.


Assuntos
Antineoplásicos/uso terapêutico , Ascite/tratamento farmacológico , Benzofuranos/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/prevenção & controle , Neoplasias Hepáticas/tratamento farmacológico , Fibrose Pulmonar/prevenção & controle , Adjuvantes Farmacêuticos , Animais , Apoptose/efeitos dos fármacos , Ascite/complicações , Bleomicina/efeitos adversos , Bleomicina/uso terapêutico , Carcinoma Hepatocelular/complicações , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Líquens/imunologia , Neoplasias Hepáticas/complicações , Masculino , Camundongos , Camundongos Endogâmicos , Neoplasias Experimentais , Fibrose Pulmonar/etiologia , Proteínas Smad/metabolismo
6.
Oncotarget ; 8(70): 114945-114955, 2017 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-29383132

RESUMO

There is an urgent need for effective molecular therapies for hepatocellular carcinoma (HCC), the third-leading cause of cancer-related deaths worldwide. Norcantharidin (NCTD), a demethylated derivative of cantharidin, reportedly exhibits anticancer activity against various types of tumors, including HCC, though the mechanisms involved remain largely unknown. Here, we report that NCTD reduces viability of human MHCC-97H (97H) and HepG2 HCC cells, and induces cell death by triggering high levels of autophagy. Moreover, a significant attenuation of tumor growth was observed after NCTD treatment of HepG2 tumors in vivo, and this effect was enhanced by co-treatment with the c-Met inhibitor crizotinib. Interestingly, western blot analyses showed that the cytotoxic autophagy induced by NCTD correlates with a reduction in the phosphorylation status of both c-Met and m-TOR. These results suggest that cytotoxic autophagy resulting from inhibition of c-Met/mTOR signaling may be achieved in HCC by combined NCTD and crizotinib administration. Further studies to validate the therapeutic potential of this approach are warranted.

7.
Exp Biol Med (Maywood) ; 241(2): 193-204, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26290140

RESUMO

Pogostemonis Herba, known as "Guang-Huo-Xiang" in Chinese, has been widely used in the treatment of gastrointestinal dysfunction. Pogostone is one of the major constituents of Pogostemonis Herba. The aim was to scientifically evaluate the possible gastroprotective effect and the underlying mechanisms of pogostone against indomethacin-induced gastric ulcer in rats. Rats were orally treated with vehicle, lansoprazole (30 mg/kg) or pogostone (10, 20 and 40 mg/kg) and subsequently exposed to acute gastric lesions induced by indomethacin. Gross evaluation, histological observation, gastric mucosal superoxide dismutase activity, glutathione content, catalase activity, malonaldehyde level and prostaglandin E2 production were performed. Immunohistochemistry and reverse transcription polymerase chain reaction for cyclooxygenase-1 and cyclooxygenase-2, as well as terminal deoxynucleotidyltransferase-mediated dUTP nick-end labeling assay, immunohistochemistry for heat-shock protein 70, B-cell lymphoma-2 and Bax were conducted. Results indicated that rats pretreated with pogostone showed remarkable protection from the gastric mucosa damage compared to vehicle-treated rats based on the ulcer index and inhibition percentage. Histologically, oral administration of pogostone resulted in observable improvement of gastric injury, characterized by reduction of necrotic lesion, flattening of gastric mucosa and alleviation of submucosal edema with hemorrhage. Pogostone pretreatment significantly raised the depressed activities of superoxide dismutase, glutathione and catalase, while reduced the elevated malonaldehyde level compared with indomethacin-induced group. Pogostone-pretreated group induced a significant increase in gastric mucosal prostaglandin E2 level and obvious up-regulation of protein levels and mRNA expressions of cyclooxygenase-1 and cyclooxygenase-2. Furthermore, antiapoptotic effect of pogostone was verified by terminal deoxynucleotidyltransferase-mediated dUTP nick-end labeling assay, and the apoptotic process triggered by pogostone involved the up-expression of heat-shock protein70 and B-cell lymphoma-2 protein, and suppression of Bax protein expressions in the ulcerated tissues. It is speculated that the gastroprotective effect of pogostone against indomethacin-induced gastric ulceration might be associated with its stimulation of cyclooxygenase-mediated prostaglandin E2, antioxidant and antiapoptotic effect.


Assuntos
Fármacos Gastrointestinais/administração & dosagem , Indometacina/toxicidade , Óleos Voláteis/administração & dosagem , Úlcera Gástrica/tratamento farmacológico , Úlcera Gástrica/prevenção & controle , Administração Oral , Animais , Modelos Animais de Doenças , Mucosa Gástrica/patologia , Fármacos Gastrointestinais/isolamento & purificação , Histocitoquímica , Humanos , Imuno-Histoquímica , Indometacina/administração & dosagem , Masculino , Microscopia , Óleos Voláteis/isolamento & purificação , Ratos Sprague-Dawley , Índice de Gravidade de Doença , Úlcera Gástrica/induzido quimicamente , Resultado do Tratamento
8.
Int Immunopharmacol ; 26(2): 384-91, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25916678

RESUMO

Andrographolide sodium bisulfite (ASB), a water-soluble sulfonate of andrographolide has been shown to possess anti-inflammatory, antipyretic and analgesic activities. However, there is no report on the gastroprotective effect of ASB against indomethacin-induced gastric ulcer. Here we investigated the possible anti-ulcerogenic potential of ASB and the underlying mechanism against indomethacin-induced gastric ulcer in rats. The ulcer area, histopathological assessment, contents of gastric mucosal glutathione (GSH), catalase (CAT), superoxide dismutase (SOD), malonaldehyde (MDA) and prostaglandin E2 (PGE2) were examined. In addition, cyclooxygenase-1 (COX-1), cyclooxygenase-2 (COX-2) mRNA expression and immunohistochemical evaluation of HSP70, Bcl-2 and Bax proteins were also investigated. Results indicated that ASB pre-treatment significantly reduced the ulcer areas induced by indomethacin compared with the vehicle group. The gastric levels of GSH, CAT and SOD were markedly increased by ASB while the level of MDA was decreased. In addition, ASB pretreatment significantly promoted the gastric PGE2 levels and up-regulated the COX-1 and COX-2 mRNA expression in comparison with the vehicle group. Immunohistochemistry analysis showed obvious up-regulation of HSP70 and Bcl-2 protein expression while suppression of Bax protein in the gastric tissue of ASB-pretreated group. Taken together, these findings indicated that the gastroprotective effect of ASB might be associated with the improvement of antioxidative status, activation of COX-mediated PGE2 synthesis, down-regulation of Bax proteins and up-regulation of Bcl-2 and HSP70 proteins. ASB might have the potential for further development as a promising alternative for antiulcer treatment.


Assuntos
Antioxidantes/administração & dosagem , Diterpenos/administração & dosagem , Mucosa Gástrica/efeitos dos fármacos , Úlcera Gástrica/prevenção & controle , Sulfitos/administração & dosagem , Animais , Antioxidantes/efeitos adversos , Catalase/metabolismo , Dinoprostona/metabolismo , Diterpenos/efeitos adversos , Mucosa Gástrica/patologia , Glutationa/metabolismo , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Humanos , Indometacina/administração & dosagem , Malondialdeído/metabolismo , Prostaglandina-Endoperóxido Sintases/genética , Prostaglandina-Endoperóxido Sintases/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos , Ratos Sprague-Dawley , Úlcera Gástrica/induzido quimicamente , Sulfitos/efeitos adversos , Superóxido Dismutase/metabolismo
9.
Rejuvenation Res ; 18(5): 437-48, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25849065

RESUMO

It is known that solar ultraviolet (UV) radiation to human skin causes photo-aging, including increases in skin thickness and wrinkle formation and reduction in skin elasticity. UV radiation induces damage to skin mainly by superfluous reactive oxygen species and chronic low-grade inflammation, which eventually up-regulate the expression of matrix metalloproteinases (MMPs). In this study, the super-critical carbon dioxide extract from flowers and buds of Chrysanthemum indicum Linnén (CISCFE), which has been reported to possess free radical scavenging and anti-inflammatory properties, was investigated for its photo-protective effect by topical application on the skin of mice. Moreover, CISCFE effectively suppressed the UV-induced increase in skin thickness and wrinkle grading in a dose-dependent manner, which was correlated with the inhibition of loss of collagen fiber content and epidermal thickening. Furthermore, we observed that CISCFE could obviously decrease UV-induced skin inflammation by inhibiting the production of inflammatory cytokines (interleukin-1ß [IL-1ß, IL-6, IL-10, tumor necrosis factor-α), alleviate the abnormal changes of anti-oxidative indicators (superoxide dismutase, catalase, and glutathione peroxidase), and down-regulate the levels of MMP-1 and MMP-3. The results indicated that CISCFE was a novel photo-protective agent from natural resources against UV irradiation.


Assuntos
Dióxido de Carbono/farmacologia , Chrysanthemum/química , Flores/química , Extratos Vegetais/farmacologia , Substâncias Protetoras/farmacologia , Envelhecimento da Pele/efeitos da radiação , Raios Ultravioleta , Animais , Colágeno/metabolismo , Citocinas/biossíntese , Elasticidade , Epiderme/efeitos dos fármacos , Epiderme/patologia , Epiderme/efeitos da radiação , Feminino , Mediadores da Inflamação/metabolismo , Malondialdeído/metabolismo , Metaloproteinases da Matriz/metabolismo , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/efeitos da radiação , Envelhecimento da Pele/efeitos dos fármacos
10.
Int Immunopharmacol ; 22(2): 371-8, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25068825

RESUMO

Usnic acid is a dibenzofuran derivative found in several lichen species, which has been shown to possess several activities, including antiviral, antibiotic, antitumoral, antipyretic, analgesic, antioxidative and anti-inflammatory activities. However, there were few reports on the effects of usnic acid on LPS-induced acute lung injury (ALI). The aim of our study was to explore the effect and possible mechanism of usnic acid on LPS-induced lung injury. In the present study, we found that pretreatment with usnic acid significantly improved survival rate, pulmonary edema. In the meantime, protein content and the number of inflammatory cells in bronchoalveolar lavage fluid (BALF) significantly decreased, and the levels of MPO, MDA, and H2O2 in lung tissue were markedly suppressed after treatment with usnic acid. Meanwhile, the activities of SOD and GSH in lung tissue significantly increased after treatment with usnic acid. Additionally, to evaluate the anti-inflammatory activity of usnic acid, the expression of pro-inflammatory cytokines including tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6) and anti-inflammatory cytokine IL-10, and chemokines interleukin-8 (IL-8) and macrophage inflammatory protein-2 (MIP-2) in BALF were studied. The results in the present study indicated that usnic acid attenuated the expression of TNF-α, IL-6, IL-8 and MIP-2. Meanwhile, the improved level of IL-10 in BALF was observed. In conclusion, these data showed that the protective effect of usnic acid on LPS-induced ALI in mice might relate to the suppression of excessive inflammatory responses and oxidative stress in lung tissue. Thus, it was suggested that usnic acid might be a potential therapeutic agent for ALI.


Assuntos
Lesão Pulmonar Aguda/tratamento farmacológico , Anti-Inflamatórios/uso terapêutico , Antioxidantes/uso terapêutico , Benzofuranos/uso terapêutico , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/imunologia , Lesão Pulmonar Aguda/patologia , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Benzofuranos/farmacologia , Líquido da Lavagem Broncoalveolar/citologia , Contagem de Células , Citocinas/imunologia , Glutationa/metabolismo , Peróxido de Hidrogênio/metabolismo , Lipopolissacarídeos , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/patologia , Masculino , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Peroxidase/metabolismo , Superóxido Dismutase/metabolismo
11.
Artigo em Inglês | MEDLINE | ID: mdl-24223056

RESUMO

The aim of this study was to analyze the chemical composition and investigate the anti-inflammatory property of the supercritical-carbon dioxide extract from flowers and buds of C. indicum (CISCFE). The anti-inflammatory effect was evaluated in four animal models including xylene-induced mouse ear edema, acetic acid-induced mouse vascular permeability, carrageenan-induced mouse hind paw edema, and cotton pellet-induced rat granuloma formation. The results indicated that CISCFE significantly attenuated xylene-induced ear edema, decreased acetic acid-induced capillary permeability, reduced carrageenan-induced paw, and inhibited the cotton pellet-induced granuloma formation in a dose-dependent manner. Histopathologically, CISCFE abated inflammatory response of the edema paw. Preliminary mechanistic studies demonstrated that CISCFE decreased the MDA level via increasing the activities of anti-oxidant enzymes (SOD, GPx, and GRd), attenuated the productions of NF- κ B, TNF- α , IL-1 ß , IL-6, PGE2 and NO, and suppressed the activities of iNOS and COX-2. In phytochemical study, 35 compounds were identified by GC-MS, and 5 compounds (chlorogenic acid, luteolin-7-glucoside, linarin, luteolin and acacetin) were reconfirmed and quantitatively determined by HPLC-PAD. This paper firstly analyzed the chemical composition by combining GC-MS with HPLC-PAD and explored possible mechanisms for the anti-inflammatory effect of CISCFE.

12.
Fitoterapia ; 91: 60-67, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23978581

RESUMO

In the present study, the inactivation effect of scutellarin (SL) on jack bean urease was investigated to elucidate the inhibitory potency, kinetics and mechanism of inhibition. It was revealed that SL acted as a concentration- and time-dependent inactivator of urease characteristic of slow-binding inhibition with an IC50 of 1.35±0.15 mM. The rapid formation of the initial SL-urease complex with an inhibition constant of Ki=5.37×10(-2) mM was followed by a slow isomerization into the final complex with the overall inhibition constant of Ki*=3.49×10(-3) mM. High effectiveness of thiol protectors, such as L-cysteine (L-cys), 2-mercaptoethanol (2-ME) and dithiothreitol (DTT) significantly slowed down the rate of inactivation, indicating the strategic role of the active site sulfhydryl group in the blocking process. While the insignificant protection by boric acid and fluoride from the inactivation further confirmed that the active site cysteine should be obligatory for urease inhibition, which was also rationalized by the molecular docking study. The inhibition of SL on urease proved to be reversible since SL-blocked urease could be reactivated by DTT application and multidilution. The results obtained indicated that urease inactivation resulted from the reaction between SL and the sulfhydryl group.


Assuntos
Apigenina/farmacologia , Canavalia/enzimologia , Erigeron/química , Glucuronatos/farmacologia , Extratos Vegetais/farmacologia , Urease/antagonistas & inibidores , Cinética , Extratos Vegetais/metabolismo , Compostos de Sulfidrila/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA