Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neurochem Res ; 48(6): 1958-1970, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36781685

RESUMO

BT75, a boron-containing retinoid, is a novel retinoic acid receptor (RAR)α agonist synthesized by our group. Previous studies indicated that activation of retinoic acid (RA) signaling may attenuate progression of Alzheimer's disease (AD). Presently, we aimed to examine the anti-inflammatory effect of BT75 and explore the possible mechanism using cultured cells and an AD mouse model. Pretreatment with BT75 (1-25 µM) suppressed the release of nitric oxide (NO) and IL-1ß in the culture medium of mouse microglial SIM-A9 cells activated by LPS. BMS195614, an RARα antagonist, partially blocked the inhibition of NO production by BT75. Moreover, BT75 attenuated phospho-Akt and phospho-NF-κB p65 expression augmented by LPS. In addition, BT75 elevated arginase 1, IL-10, and CD206, and inhibited inducible nitric oxide synthase (iNOS) and IL-6 formation in LPS-treated SIM-A9 cells, suggesting the promotion of M1-M2 microglial phenotypic polarization. C57BL/6 mice were injected intracerebroventricularly (icv) with streptozotocin (STZ) (3 mg/kg) to provide an AD-like mouse model. BT75 (5 mg/kg) or the vehicle was intraperitoneally (ip) injected to icv-STZ mice once a day for 3 weeks. Immunohistochemical analyses indicated that GFAP-positive cells and rod or amoeboid-like Iba1-positive cells, which increased in the hippocampal fimbria of icv-STZ mice, were reduced by BT75 treatment. Western blot results showed that BT75 decreased levels of neuronal nitric oxide synthase (nNOS), GFAP, and phosphorylated Tau, and increased levels of synaptophysin in the hippocampus of icv-STZ mice. BT75 may attenuate neuroinflammation by affecting the Akt/NF-κB pathway and microglial M1-M2 polarization in LPS-stimulated SIM-A9 cells. BT75 also reduced AD-like pathology including glial activation in the icv-STZ mice. Thus, BT75 may be a promising anti-inflammatory and neuroprotective agent worthy of further AD studies.


Assuntos
Doença de Alzheimer , Microglia , Camundongos , Animais , Microglia/metabolismo , NF-kappa B/metabolismo , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Lipopolissacarídeos/toxicidade , Proteínas Proto-Oncogênicas c-akt/metabolismo , Camundongos Endogâmicos C57BL , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico
2.
Int J Neuropsychopharmacol ; 18(5)2014 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-25609594

RESUMO

BACKGROUND: Ethanol exposure to rodents during postnatal day 7 (P7), which is comparable to the third trimester of human pregnancy, induces long-term potentiation and memory deficits. However, the molecular mechanisms underlying these deficits are still poorly understood. METHODS: In the present study, we explored the potential role of epigenetic changes at cannabinoid type 1 (CB1R) exon1 and additional CB1R functions, which could promote memory deficits in animal models of fetal alcohol spectrum disorder. RESULTS: We found that ethanol treatment of P7 mice enhances acetylation of H4 on lysine 8 (H4K8ace) at CB1R exon1, CB1R binding as well as the CB1R agonist-stimulated GTPγS binding in the hippocampus and neocortex, two brain regions that are vulnerable to ethanol at P7 and are important for memory formation and storage, respectively. We also found that ethanol inhibits cyclic adenosine monophosphate response element-binding protein (CREB) phosphorylation and activity-regulated cytoskeleton-associated protein (Arc) expression in neonatal and adult mice. The blockade or genetic deletion of CB1Rs prior to ethanol treatment at P7 rescued CREB phosphorylation and Arc expression. CB1R knockout mice exhibited neither ethanol-induced neurodegeneration nor inhibition of CREB phosphorylation or Arc expression. However, both neonatal and adult mice did exhibit enhanced CREB phosphorylation and Arc protein expression. P7 ethanol-treated adult mice exhibited impaired spatial and social recognition memory, which were prevented by the pharmacological blockade or deletion of CB1Rs at P7. CONCLUSIONS: Together, these findings suggest that P7 ethanol treatment induces CB1R expression through epigenetic modification of the CB1R gene, and that the enhanced CB1R function induces pCREB, Arc, spatial, and social memory deficits in adult mice.


Assuntos
Etanol/toxicidade , Regulação da Expressão Gênica/efeitos dos fármacos , Transtornos da Memória/induzido quimicamente , Doenças Neurodegenerativas/induzido quimicamente , Receptor CB1 de Canabinoide/efeitos dos fármacos , Receptor CB1 de Canabinoide/metabolismo , Complexo Relacionado com a AIDS/metabolismo , Acetilação/efeitos dos fármacos , Fatores Etários , Animais , Animais Recém-Nascidos/metabolismo , Animais Recém-Nascidos/psicologia , Proteína de Ligação a CREB/metabolismo , Depressores do Sistema Nervoso Central/toxicidade , Epigênese Genética/efeitos dos fármacos , Éxons/efeitos dos fármacos , Feminino , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Histonas/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neocórtex/efeitos dos fármacos , Neocórtex/metabolismo , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/psicologia , Fosforilação/efeitos dos fármacos , Receptor CB1 de Canabinoide/deficiência , Receptor CB1 de Canabinoide/genética , Comportamento Social , Regulação para Cima/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA