Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Regen Biomater ; 11: rbae091, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39233867

RESUMO

Retinal degeneration diseases, such as age-related macular degeneration (AMD) and retinitis pigmentosa (RP), initially manifest as dysfunction or death of the retinal pigment epithelium (RPE). Subretinal transplantation of human pluripotent stem cell (hPSC)-derived RPE cells has emerged as a potential therapy for retinal degeneration. However, RPE cells differentiated from hPSCs using current protocols are xeno-containing and are rarely applied in clinical trials. The development of hPSC-derived RPE cell differentiation protocols using xeno-free biomaterials is urgently needed for clinical applications. In this study, two protocols (the activin A and NIC84 protocols) were selected for modification and use in the differentiation of hiPSCs into RPE cells; the chetomin concentration was gradually increased to achieve high differentiation efficiency of RPE cells. The xeno-free extracellular matrix (ECM) proteins, laminin-511, laminin-521 and recombinant vitronectin, were selected as plate-coating substrates, and a Matrigel (xeno-containing ECM)-coated surface was used as a positive control. Healthy, mature hPSC-derived RPE cells were transplanted into 21-day-old Royal College of Surgeons (RCS) rats, a model of retinal degeneration disease. The visual function of RCS rats was evaluated by optomotor response (qOMR) and electroretinography after transplantation of hPSC-derived RPE cells. Our study demonstrated that hPSCs can be efficiently differentiated into RPE cells on LN521-coated dishes using the NIC84 protocol, and that subretinal transplantation of the cell suspensions can delay the progression of vision loss in RCS rats.

2.
Sci Rep ; 14(1): 19735, 2024 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-39183213

RESUMO

Meniscus-derived stem cells (MeSCs), a unique type of MSC, have outstanding advantages in meniscal cytotherapy and tissue engineering, but the effects and molecular mechanisms of PBM on MeSCs are still unclear. We used 660-nm LED light with different energy densities to irradiate six human MeSC samples and tested their proliferation rate via cell counting, chondrogenic differentiation capacity via the DMMB assay, mitochondrial activity via the MTT assay, and gene expression via qPCR. The proliferation ability, chondrogenic capacity and mitochondrial activity of the 18 J/cm2 group were greater than those of the 4 J/cm2 and control groups. The mRNA expression levels of Akt, PI3K, TGF-ß3, Ki67 and Notch-1 in the 18 J/cm2 group were greater than those in the other groups in most samples. After chondrogenic induction, the expression of Col2A1, Sox9 and Aggrecan in the 18 J/cm2 group was significantly greater than that in the 4 J/cm2 and control groups in most of the samples. The variation in the MTT values and Src, PI3K, Akt, mTOR and GSK3ß levels decreased with time. The results showed that 660-nm LED red light promoted proliferation and chondrogenic differentiation and affected the gene expression of MeSCs, and the effects on gene expression and mitochondrial activity decreased with time.


Assuntos
Diferenciação Celular , Proliferação de Células , Condrogênese , Menisco , Células-Tronco Mesenquimais , Condrogênese/efeitos da radiação , Humanos , Proliferação de Células/efeitos da radiação , Diferenciação Celular/efeitos da radiação , Menisco/citologia , Menisco/metabolismo , Células-Tronco Mesenquimais/efeitos da radiação , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Terapia com Luz de Baixa Intensidade , Células Cultivadas , Fatores de Transcrição SOX9/metabolismo , Fatores de Transcrição SOX9/genética , Mitocôndrias/metabolismo , Mitocôndrias/efeitos da radiação
3.
Int J Biol Macromol ; 256(Pt 2): 127490, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37979758

RESUMO

Hepatic cancer is among the most recurrently detected malignancies worldwide and one of the main contributors to cancer-associated mortality. With few available therapeutic choices, there is an instant necessity to explore suitable options. In this aspect, Nanotechnology has been employed to explore prospective chemotherapeutic approaches, especially for cancer treatment. Nanotechnology is concerned with the biological and physical properties of nanoparticles in the therapeutic use of drugs. In the current work, formulation, and characterization of α-Fe2O3-Sodium Alginate-Eugenol nanocomposites (FSE NCs) using several approaches like SEM and TEM, UV-visible, FTIR, and PL spectroscopy, XRD, EDAX, and DLS studies have been performed. With an average size of 50 nm, the rhombohedral structure of NCs was identified. Further, their anticancer activity against Hep3B liver cancer cell lines has been performed by cell viability, dual staining, DCFH-DA, Annexin-V/-FITC/PI, cell cycle analysis methods, and PI3K/Akt/mTOR signaling proteins were studied to assess the anticancer effects of the NCs in Hep3B cells. Also, anti-cancer activity on animal modeling in-vivo using zebra fishes to hematological parameters, liver enzymes, and histopathology study effectiveness was noticed. Moreover, the NCs reduced the viability, elevated the ROS accumulation, diminished the membrane integrity, reduced the antioxidants, blocked the cell cycle, and triggered the PI3K/Akt/mTOR signaling axis that eventually resulted in cell death. As a result, FSE NCs possess huge potential for use as a possible anticancer candidate.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Compostos Férricos , Nanocompostos , Animais , Peixe-Zebra/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Eugenol/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Alginatos/farmacologia , Estudos Prospectivos , Serina-Treonina Quinases TOR/metabolismo , Apoptose , Nanocompostos/química , Linhagem Celular Tumoral
4.
J Mater Chem B ; 11(7): 1389-1415, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36727243

RESUMO

Human cells, especially stem cells, need to communicate and interact with extracellular matrix (ECM) proteins, which not only serve as structural components but also guide and support cell fate and properties such as cell adhesion, proliferation, survival and differentiation. The binding of the cells with ECM proteins or ECM-derived peptides via cell adhesion receptors such as integrins activates several signaling pathways that determine the cell fate, morphological change, proliferation and differentiation. The development of synthetic ECM protein-derived peptides that mimic the biological and biochemical functions of natural ECM proteins will benefit academic and clinical application. Peptides derived from or inspired by specific ECM proteins can act as agonists of each ECM protein receptor. Given that most ECM proteins function in cell adhesion via integrin receptors, many peptides have been developed that bind to specific integrin receptors. In this review, we discuss the peptide sequence, immobilization design, reaction method, and functions of several ECM protein-derived peptides. Various peptide sequences derived from mainly ECM proteins, which are used for coating or grafting on dishes, scaffolds, hydrogels, implants or nanofibers, have been developed to improve the adhesion, proliferation or differentiation of stem cells and to culture differentiated cells. This review article will help to inform the optimal choice of ECM protein-derived peptides for the development of scaffolds, implants, hydrogels, nanofibers and 2D cell culture dishes to regulate the proliferation and direct the differentiation of stem cells into specific lineages.


Assuntos
Proteínas da Matriz Extracelular , Peptídeos , Humanos , Peptídeos/química , Diferenciação Celular , Integrinas/metabolismo , Células-Tronco/metabolismo , Proliferação de Células , Hidrogéis
5.
J Mater Chem B ; 11(7): 1434-1444, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36541288

RESUMO

Human pluripotent stem cells (hPSCs) have the ability to differentiate into cells derived from three germ layers and are an attractive cell source for cell therapy in regenerative medicine. However, hPSCs cannot be cultured on conventional tissue culture flasks but can be cultured on biomaterials with specific hPSC integrin interaction sites. We designed hydrogels conjugated with several designed peptides that had laminin-ß4 active sites, optimal elasticities and different zeta potentials. A higher expansion fold of hPSCs cultured on the hydrogels was found with the increasing zeta potential of the hydrogels conjugated with designed peptides, where positive amino acid (lysine) insertion into the peptides promoted higher zeta potentials of the hydrogels and higher expansion folds of hPSCs when cultured on the hydrogels using xeno-free protocols. The hPSCs cultured on hydrogels conjugated with the optimal peptides showed a higher expansion fold than those on recombinant vitronectin-coated plates, which are the gold standard of hPSC cultivation dishes. The hPSCs could differentiate into specific cell lineages, such as mesenchymal stem cells (MSCs) and MSC-derived osteoblasts, even after being cultivated on hydrogels conjugated with optimal peptides for long periods of time, such as 10 passages.


Assuntos
Hidrogéis , Células-Tronco Pluripotentes , Humanos , Hidrogéis/química , Proliferação de Células , Células-Tronco Pluripotentes/metabolismo , Peptídeos/farmacologia , Peptídeos/metabolismo , Diferenciação Celular
6.
Contemp Oncol (Pozn) ; 27(4): 255-262, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38405210

RESUMO

Introduction: Cutaneous squamous cell carcinoma (SCC) is the second most common form of skin malignancy, representing around 20% of all skin cancers. It is the main cause of death due to non-melanoma skin cancer every year. Metastatic cutaneous SCC is associated with poor prognosis in patients and warrants a more effective and specific approach such as disruption of genes associated with cancer metastasis. Material and methods: Matrix metalloproteinases (MMPs) are enzymes involved in cancer progression and are regarded as major oncotargets. Among others, MMP9 plays critical roles in tumour progression, angiogenesis, and invasion of cutaneous SCC. We aimed to determine whether the MMP9 gene is a suitable gene target for anti-cancer therapy for cutaneous SCC. We performed clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9 transfection of guide RNA (gRNA) targeting the MMP9 gene into human cutaneous SCC cell line A431. Results: Following CRISPR transfection treatment, the viability (p < 0.01) and migratory activities (p < 0.0001) of in vitro cutaneous SCC cells were found to be reduced significantly. The use of quantitative polymerase chain reaction (qPCR) also revealed downregulation of the mRNA expression levels of cancer-promoting genes TGF-ß, FGF, PI3K, VEGF-A, and vimentin. Direct inhibition of the MMP9 gene was shown to decrease survivability and metastasis of cutaneous SCC cell line A431. Conclusions: Our findings provided direct evidence that MMP9 is important in the viability, proliferation, and metastasis of cutaneous SCC cells. It serves as a positive foundation for future CRISPR-based targeted anti-cancer therapies in treating skin cancer and other forms of malignancies that involve MMPs as the key determinants.

7.
Bioinorg Chem Appl ; 2022: 1473922, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36199748

RESUMO

The main aim of this study was to synthesize copper oxide- (CuO-) titanium oxide- (TiO2-) chitosan-amygdalin nanocomposites (CTCANc) and to characterize them physically and biologically (antimicrobial and anticancer activity using MOLT4 blood cancer cell line) to endorse their useful applications as potential drug candidates in anticancer avenues. CuO-TiO2-chitosan-amygdalin nanocomposites were synthesized according to standard, reported methods. Physical characterization of the nanocomposites was performed using methods like X-ray diffractometer (XRD), and morphological and ultrastructural analysis of nanocomposites were done using electron microscope scanning and transmission. FTIR was recorded using a Perkin-Elmer spectrometer, and photoluminescence (PL) spectra were done using the spectrometer. Further, antibacterial activities were assessed using standard bacterial cultures. To demonstrate the nanocomposite's anticancer effects, MTT assay, morphological analysis, apoptosis studies using acridine orange/ethidium bromide (AO/EtBr) dual staining, reactive oxygen species (ROS) analysis, and levels of antioxidant enzymes were analyzed using the MOLT4 blood cancer cell line. Synthesized nanocomposites were characterized using XRD and showed various peaks, respectively, for CuO-TiO2, amygdalin, and chitosan. MTT assay indicated an IC50 value of 38.41 µg/ml concentration of CTCANc. Hence, 30 and 40 µg/ml were used for the subsequent experiments. Morphological analysis, staining for apoptosis using AO/EtBr, mitochondrial membrane potential (MMP or ΔΨm) analysis, ROS analysis, and determination of the SOD, CAT, MDA, and GSH levels were performed. Observations like a significant loss of morphology, induction of apoptosis, elevated ROS, and decreased MMP were significant in 30 and 40 µg/ml nanocomposite-treated cells when compared to control cells. The bimetallic nanocomposites exhibited typical nanocomposites characteristics and significant antibacterial and anticancer effects. The study results endorse the antibacterial, anticancer activity of CuO-TiO2-chitosan-amygdalin nanocomposites and strongly suggest that further in-depth research using CuO-TiO2-chitosan-amygdalin nanocomposites could reveal their efficacy in the clinical scenario.

8.
Bioinorg Chem Appl ; 2022: 6835625, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36212986

RESUMO

Currently, new advancements in the area of nanotechnology opened up new prospects in the field of medicine that could provide us with a solution for numerous medical complications. Although a several varieties of nanoparticles is being explored to be used as nanomedicines, cerium oxide nanoparticles (CeO2 NPs) are the most attractive due to their biocompatibility and their switchable oxidation state (+3 and +4) or in other words the ability to act as prooxidant and antioxidant depending on the pH condition. Green synthesis of nanoparticles is preferred to make it more economical, eco-friendly, and less toxic. The aim of our study here is to formulate the CeO2 NPs (CeO2 NPs) using Morinda citrifolia (Noni) leaf extract and study its optical, structural, antibacterial, and anticancer abilities. Their optical and structural characterization was accomplished by employing X-ray diffractography (XRD), TEM, EDAX, FTIR, UV-vis, and photoluminescence assays. Our CeO2 NPs expressed strong antibacterial effects against Gram-positive S. aureus and S. pneumonia in addition to Gram-negative E. coli and K. pneumonia when compared with amoxicillin. The anticancer properties of the green synthesized CeO2 NPs against human acute lymphoblastic leukemia (ALL) MOLT-4 cells were further explored by the meticulous study of their ability to diminish cancer cell viability (cytotoxicity), accelerate apoptosis, escalate intracellular reactive oxygen species (ROS) accumulation, decline the mitochondria membrane potential (MMP) level, modify the cell adhesion, and shoot up the activation of proapoptotic markers, caspase-3, -8, and -9, in the tumor cells. Altogether, the outcomes demonstrated that our green synthesized CeO2 NPs are an excellent candidate for alternative cancer therapy.

9.
Bioinorg Chem Appl ; 2022: 5949086, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36212987

RESUMO

Leukemia is the most prevalent cancer in children and one of the most common and deadly cancers that affect adults. Several metal oxide nanoparticles, biopolymers, and phytochemicals have been discovered to target cancer cells selectively while inflicting low to no damage to healthy cells. Among the existing nanoparticle synthesis methodologies, biologically synthesized nanoparticles using phytochemicals have emerged as a straightforward, economical, and environmentally sound strategy. The synergistic antitumor potential of ZnO-TiO2-chitosan-farnesol nanocomposites (NCs) against leukemia MOLT-4 cells was investigated in the current study. After synthesizing the NCs, characterization of the same was carried out using XRD, DLS, FESEM, TEM, PL, EDX, and FTIR spectroscopy. To analyze its anticancer activity, MOLT-4 cells were cultured and treated at diverse dosages of NCs. The cell viability upon treatment was examined by MTT assay. The morphological and nuclear modifications were observed by dual staining. ROS and MMP levels were observed by DCFH-DA staining and Rh-123 dye, respectively. Furthermore, the caspase 3, 8, and 9 levels were examined by performing ELISA. The XRD patterns exhibited a hexagonal structure of the NCs. In the DLS spectrum, the hydrodynamic diameter of the NCs was observed to be 126.2 nm. The electrostatic interface between the ZnO-TiO2-chitosan-farnesol NCs was confirmed by the FTIR spectra. A significant loss of cell viability in a dosage-dependent trend confirmed the cytotoxic effect of the NCs. An elevated ROS level and MMP depletion suggested apoptosis-associated cell death via the intrinsic pathway, which was confirmed by elevated expressions of caspase 3, 8, and 9 markers. Thus, the results showed that the synthesized NCs demonstrated a remarkable anticancer potential against leukemic cells and can be potentially valuable in cancer treatments. The findings from this study conclude that this is a new approach for modifying the physicochemical characteristics of ZnO-TiO2-chitosan-farnesol composites to increase their properties and synergistically exhibit anticancer properties in human leukemic cancer cells.

10.
Bioinorg Chem Appl ; 2022: 9602725, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36164585

RESUMO

In this study, cells from human Chronic Myelogenous Leukemia (K562) were cultivated with CuO-TiO2-Chitosan-Berbamine nanocomposites. We examined nanocomposites using XRD, DLS, FESEM, TEM, PL, EDAX, and FTIR spectroscopy, as well as MTT for cytotoxicity, and AO/EtBr for apoptotic morphology assessment. The rate of apoptosis and cell cycle arrests was determined using flow cytometry. Flow cytometry was also employed to identify pro- and antiapoptotic proteins such as Bcl2, Bad, Bax, P53, and Cyt C. The FTIR spectrum revealed that the CuO-TiO2-Chitosan-Berbamine nanocomposites were electrostatically interlocked. The nanocomposites' XRD signals revealed a hexagonal shape. In the DLS spectrum, nanocomposites were found to have a hydrodynamic diameter. As a result of their cytotoxic action, nanocomposites displayed concentration-dependent cytotoxicity. The nanocomposites, like Doxorubicin, caused cell cycle phase arrest in K562 cells. After treatment with IC50 concentrations of CuO-TiO2-Chitosan-Berbamine nanocomposites and Doxorubicin, a substantial percentage of cells were in G2/M stage arrest. Caspase-3, -7, -8, -9, Bax, Bad, Cyt C, and P53 expression were considerably enhanced in K562 cells, whereas Bcl2 expression was decreased, indicating that these cells may have therapeutic potential against human blood cancer/leukemia-derived disorders. As a result, the nanocomposites demonstrated outstanding anticancer potential against leukemic cells. CuO-TiO2-Chitosan-Berbamine, according to our findings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA