Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(4)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36838902

RESUMO

Iron oxide nanoparticles (IONPs) were synthesized via a block copolymer-assisted hydrothermal method and the phase purity and the crystal structure were investigated by X-ray diffraction. The Rietveld analysis of X-ray diffractometer spectra shows the hexagonal phase symmetry of α-Fe2O3. Further, the vibrational study suggests Raman active modes: 2A1g + 5Eg associated with α-Fe2O3, which corroborates the Rietveld analysis and orbital analysis of 2PFe. The superparamagnetic behavior is confirmed by magnetic measurements performed by the physical properties measurement system. The systematic study of the Congo red (CR) interaction with IONPs using a UV-visible spectrophotometer and a liquid chromatography-tandem mass spectrometry system equipped with a triple quadrupole mass analyzer and an electrospray ionization interface shows effective adsorption. In visible light, the Fe2O3 nanoparticles get easily excited and generate electrons and holes. The photogenerated electrons reduce the Fe3+ ions to Fe2+ ions. The Fe2+/H2O2 oxidizes CR by the Fenton mechanism. The strong adsorption ability of prepared nanoparticles towards dyes attributes the potential candidates for wastewater treatment and other catalytic applications.


Assuntos
Vermelho Congo , Nanopartículas , Peróxido de Hidrogênio , Corantes , Polímeros , Nanopartículas Magnéticas de Óxido de Ferro
2.
Animals (Basel) ; 12(17)2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36077909

RESUMO

The current study evaluated nine essential oil blends (EOBs) for their effects on ruminal in vitro dry matter digestibility (IVDMD), efficiency of microbial production, total short-chain fatty acid concentration (SCFA), total gas, and greenhouse gas (GHG) emissions using two dietary substrates (high forage and high concentrate). The study was arranged as a 2 × 2 × 9 + 1 factorial design to evaluate the effects of the nine EOBs on the two dietary substrates at two time points (6 and 24 h). The inclusion levels of the EOBs were 0 µL (control) and 100 µL with three laboratory replicates. Substrate × EOBs × time interactions were not significant (p > 0.05) for total gas and greenhouse gas emissions. The inclusion of EOBs in the diets resulted in a reduction (p < 0.001) in GHG emissions, except for EOB1 and EOB8 in the high concentrate diet at 6 h and for EOB8 in the high forage diet at 24 h of incubation. Diet type had no effect on apparent IVDMD (IVADMD) whereas the inclusion of EOBs reduced (p < 0.05) IVADMD with higher values noted for the control treatment. The efficiency of microbial production was greater (p < 0.001) for EOB treatments except for EOB1 inclusion in the high forage diet. The inclusion of EOBs affected (p < 0.001) the total and molar proportion of volatile fatty acid concentrations. Overall, the inclusion of the EOBs modified the rumen function resulting in improved efficiency of microbial production. Both the apparent and truly degraded DM was reduced in the EOB treatments. The inclusion of EOBs also resulted in reduced GHG emissions in both diets, except for EOB8 in the high forage diet which was slightly higher than the control treatment.

3.
Acta Biomater ; 93: 86-96, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31121312

RESUMO

Implant osteoinduction and subsequent osteogenic activity are critical events that need improvement for regenerative healing of large craniofacial bone defects. Here we describe the augmentation of the mineral content of a class of mineralized collagen scaffolds under development for craniomaxillofacial bone regeneration via the inclusion of zinc ions to promote osteogenesis in vitro. Zinc is an essential trace element in skeletal tissue and bone, with soluble zinc being shown to promote osteogenic differentiation of porcine adipose derived stem cells. We report the development of a new class of zinc functionalized scaffolds fabricated by adding zinc sulfate to a mineralized collagen-glycosaminoglycan precursor suspension that was then freeze dried to form a porous biomaterial. We report analysis of zinc functionalized scaffolds via imaging (scanning electron microscopy), mechanical testing (compression), and compositional (X-ray diffraction, inductively coupled plasma mass spectrometry) analyses. Notably, zinc-functionalized scaffolds display morphological changes to the mineral phase and altered elastic modulus without substantially altering the composition of the brushite phase or removing the micro-scale pore morphology of the scaffold. These scaffolds also display zinc release kinetics on the order of days to weeks and promote successful growth and pro-osteogenic capacity of porcine adipose derived stem cells cultured within these zinc scaffolds. Taken together, we believe that zinc functionalized scaffolds provide a unique platform to explore strategies to improve in vivo osteogenesis in craniomaxillofacial bone injuries models. STATEMENT OF SIGNIFICANCE: Craniomaxillofacial bone defects that arise from traumatic, congenital, and post-oncologic origins cannot heal on their own and often require surgical intervention. We have developed a class of mineralized collagen scaffolds that promotes osteogenesis and bone regeneration. Here we describe the inclusion of zinc sulfate into the mineralized collagen scaffold to improve osteogenesis. Zinc functionalized scaffolds demonstrate altered crystallite microstructure but consistent Brushite chemistry, improved mechanics, and promote zinc transporter expression while supporting stem cell viability, osteogenic differentiation, and mineral biosynthesis.


Assuntos
Tecido Adiposo/metabolismo , Regeneração Óssea , Calcificação Fisiológica , Colágeno/química , Células-Tronco Mesenquimais/metabolismo , Alicerces Teciduais/química , Zinco/química , Tecido Adiposo/patologia , Animais , Células Cultivadas , Traumatismos Faciais/metabolismo , Traumatismos Faciais/patologia , Traumatismos Faciais/terapia , Teste de Materiais , Células-Tronco Mesenquimais/patologia , Osteogênese , Suínos
4.
Science ; 356(6338): 608-616, 2017 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-28495746

RESUMO

Multiple human diseases ensue from a hereditary or acquired deficiency of iron-transporting protein function that diminishes transmembrane iron flux in distinct sites and directions. Because other iron-transport proteins remain active, labile iron gradients build up across the corresponding protein-deficient membranes. Here we report that a small-molecule natural product, hinokitiol, can harness such gradients to restore iron transport into, within, and/or out of cells. The same compound promotes gut iron absorption in DMT1-deficient rats and ferroportin-deficient mice, as well as hemoglobinization in DMT1- and mitoferrin-deficient zebrafish. These findings illuminate a general mechanistic framework for small molecule-mediated site- and direction-selective restoration of iron transport. They also suggest that small molecules that partially mimic the function of missing protein transporters of iron, and possibly other ions, may have potential in treating human diseases.


Assuntos
Ferro/metabolismo , Animais , Células CACO-2 , Absorção Gastrointestinal , Hemoglobinas/metabolismo , Humanos , Proteínas de Ligação ao Ferro/metabolismo , Monoterpenos/metabolismo , Ratos , Saccharomyces cerevisiae/metabolismo , Tropolona/análogos & derivados , Tropolona/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA