Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Syst Evol Microbiol ; 73(10)2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37787383

RESUMO

Two aerobic, Gram-stain-positive, spore-forming motile bacterial strains, designated SSPM10-3T and SSWR10-1T, were isolated from salterns in Jeollanam province of South Korea. Both strains were halotolerant and grew well in 5 % NaCl but not in 20 and 25% NaCl, respectively. Optimal growth was observed with 5 % NaCl, at 30 °C and at pH 7.0-8.0. On the basis of the results of phylogenetic analysis using 16S rRNA gene sequence, both the strains were placed within the genus Gracilibacillus with Gracilibacillus massiliensis (98.65 % similarity) as their nearest neighbour. Menaquinone-7 (MK-7) (97 %) was the major isoprenoid quinone in both strains and major cellular fatty acids were anteiso-C15 : 0, iso-C15 : 0 and anteiso-C17 : 0. Orthologous average nucleotide identity with usearch (OrthoANIu) and digital DNA-DNA hybridisation (dDDH) percentage comparison indicated that SSPM10-3T and SSWR10-1T exhibited highest similarity with G. massiliensis Awa-1T at 74.27 % and 21.0 and 74.23 % and 20.0 %, respectively. The DNA G+C contents of the strains were 39.1 % (SSPM10-3T) and 38.5 % (SSWR10-1T). Members of the genus Gracilibacillus, both strains were distinct from each other with respect to their ability to produce urease, ß-glucosidase, assimilation of inulin and methyl-α-d-glucopyranoside and degradation of casein. Compared with each other, ANI and d4 dDDH calculations were only 88.2 % and 36.3 %, well below the cut-off values for species delineation for each index. On the basis of their phenotypic, physiological, biochemical and phylogenetic characteristics,SSPM10-3T and SSWR10-1T represent distinct novel species for which names Gracilibacillus salinarum SSPM10-3T and Gracilibacillus caseinilyticus SSWR10-1T are proposed. The type strains are SSPM10-3T (=KACC 21933T =NBRC 115502T) and SSWR10-1T (=KACC 21934T =NBRC 115503T).


Assuntos
Ácidos Graxos , Cloreto de Sódio , Ácidos Graxos/química , Filogenia , RNA Ribossômico 16S/genética , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , Composição de Bases , Análise de Sequência de DNA , Vitamina K 2/química , Fosfolipídeos/química
2.
Artigo em Inglês | MEDLINE | ID: mdl-37725077

RESUMO

Five Hymenobacter strains isolated from air samples collected from the Suwon and Jeju regions of the Republic of Korea were studied using polyphasic taxonomic methods. Using 16S rRNA gene sequences and the resulting phylogenetic tree, the strains were primarily identified as members of the genus Hymenobacter. Digital DNA-DNA hybridization values and average nucleotide identities values for species delineation (70 and 95-96 %, respectively) between the five strains and their nearest type strains indicated that each strain represented a novel species. All strains were aerobic, Gram-stain-negative, mesophilic, rod-shaped and catalase- and oxidase-positive, with red to pink coloured colonies. The genome sizes of the five strains varied from 4.8 to 7.1 Mb and their G+C contents were between 54.1 and 59.4 mol%. Based on their phenotypic, chemotaxonomic and genotypic characteristics, we propose to classify these isolates into five novel species within the genus Hymenobacter for which we propose the names, Hymenobacter cellulosilyticus sp. nov., Hymenobacter cellulosivorans sp. nov., Hymenobacter aerilatus sp. nov., Hymenobacter sublimis sp. nov. and Hymenobacter volaticus sp. nov., with strains 5116 S-3T (=KACC 21925T=JCM 35216T), 5116 S-27T (=KACC 21926T=JCM 35217T), 5413 J-13T (=KACC 21928T=JCM 35219T), 5516 S-25T (=KACC 21931T=JCM 35222T) and 5420 S-77T (=KACC 21932T=JCM 35223T) as the type strains, respectively.


Assuntos
Cytophagaceae , Ácidos Graxos , Composição de Bases , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Ácidos Graxos/química , Cytophagaceae/genética
3.
Foods ; 12(12)2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37372611

RESUMO

The aim of this study was to analyze glucosinolates (GSLs) in germplasm that are currently conserved at the RDA-Genebank. The analysis focused on the glucosinolate diversity among the analyzed germplasms, with the goal of identifying those that would be most useful for future breeding efforts to produce nutritionally rich Choy sum plants. In total, 23 accessions of Choy sums that possessed ample background passport information were selected. On analyzing the glucosinolate content for 17 different glucosinolates, we observed aliphatic GSLs to be the most common (89.45%) and aromatic GSLs to be the least common (6.94%) of the total glucosinolates detected. Among the highly represented aliphatic GSLs, gluconapin and glucobrassicanapin were found to contribute the most (>20%), and sinalbin, glucoraphanin, glucoraphasatin, and glucoiberin were detected the least (less than 0.05%). We identified one of the accessions, IT228140, to synthesize high quantities of glucobrassicanapin and progoitrin, which have been reported to contain several therapeutic applications. These conserved germplasms are potential bioresources for breeders, and the availability of information, including therapeutically important glucosinolate content, can help produce plant varieties that can naturally impact public health.

4.
Cells ; 12(4)2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36831220

RESUMO

The phenomenon of heat stress leading to ferroptosis-like cell death has recently been observed in bacteria as well as plant cells. Despite recent findings, the evidence of ferroptosis, an iron-dependent cell death remains unknown in microalgae. The present study aimed to investigate if heat shock could induce reactive oxygen species (ROS) and iron-dependent ferroptotic cell death in Chlamydomonas reinhardtii in comparison with RSL3-induced ferroptosis. After RSL3 and heat shock (50 °C) treatments with or without inhibitors, Chlamydomonas cells were evaluated for cell viability and the induction of ferroptotic biomarkers. Both the heat shock and RSL3 treatment were found to trigger ferroptotic cell death, with hallmarks of glutathione-ascorbic acid depletion, GPX5 downregulation, mitochondrial dysfunction, an increase in cytosolic calcium, ROS production, lipid peroxidation, and intracellular iron accumulation via heme oxygenase-1 activation (HO-1). Interestingly, the cells preincubated with ferroptosis inhibitors (ferrostatin-1 and ciclopirox) significantly reduced RSL3- and heat-induced cell death by preventing the accumulation of Fe2+ and lipid ROS. These findings reveal that ferroptotic cell death affects the iron homeostasis and lipid peroxidation metabolism of Chlamydomonas, indicating that cell death pathways are evolutionarily conserved among eukaryotes.


Assuntos
Chlamydomonas reinhardtii , Ferro , Ferro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Chlamydomonas reinhardtii/metabolismo , Morte Celular , Lipídeos
5.
Plant Physiol Biochem ; 89: 18-23, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25686701

RESUMO

The role of stress induced ethylene under low temperature stress has been controversial and hitherto remains unclear. In the present study, 1-aminocyclopropane-1-carboxylate deaminase (ACCD) gene, acdS expressing mutant strains were generated from ACCD negative psychrotolerant bacterial strains Flavobacterium sp. OR306 and Pseudomonas frederiksbergensis OS211, isolated from agricultural soil during late winter. After transformation with plasmid pRKACC which contained the acdS gene, both the strains were able to exhibit ACCD activity in vitro. The effect of this ACCD under chilling stress with regards to ethylene was studied in tomato plants inoculated with both acdS expressing and wild type bacteria. On exposing the plants to one week of chilling treatment at 12/10 °C, it was found that stress ethylene, ACC accumulation and ACO activity which are markers of ethylene stress, were significantly reduced in plants inoculated with the acdS gene transformed mutants. In case of plants inoculated with strain OS211-acdS, ethylene emission, ACC accumulation and ACO activity was significantly reduced by 52%, 75.9% and 23.2% respectively compared to uninoculated control plants. Moreover, expression of cold induced LeCBF1 and LeCBF3 genes showed that these genes were significantly induced by the acdS transformed mutants in addition to reduced expression of ethylene-responsive transcription factor 13 (ETF-13) and ACO genes. Induced expression of LeCBF1 and LeCBF3 in plants inoculated with acdS expressing mutants compared to wild type strains show that physiologically evolved stress ethylene and its transcription factors play a role in regulation of cold induced genes as reported earlier in the literature.


Assuntos
Adaptação Fisiológica/genética , Bactérias/genética , Carbono-Carbono Liases/genética , Temperatura Baixa , Etilenos/metabolismo , Solanum lycopersicum/genética , Estresse Fisiológico/genética , Aminoácidos Cíclicos/genética , Aminoácidos Cíclicos/metabolismo , Bactérias/metabolismo , Carbono-Carbono Liases/metabolismo , Escherichia coli/genética , Flavobacterium/genética , Flavobacterium/metabolismo , Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes Bacterianos , Genes de Plantas , Solanum lycopersicum/metabolismo , Solanum lycopersicum/microbiologia , Solanum lycopersicum/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pseudomonas/genética , Pseudomonas/metabolismo , Microbiologia do Solo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA