Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Ther ; 29(8): 2456-2468, 2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-33781914

RESUMO

The inherited childhood blindness caused by mutations in NPHP5, a form of Leber congenital amaurosis, results in abnormal development, dysfunction, and degeneration of photoreceptors. A naturally occurring NPHP5 mutation in dogs leads to a phenotype that very nearly duplicates the human retinopathy in terms of the photoreceptors involved, spatial distribution of degeneration, and the natural history of vision loss. We show that adeno-associated virus (AAV)-mediated NPHP5 gene augmentation of mutant canine retinas at the time of active degeneration and peak cell death stably restores photoreceptor structure, function, and vision with either the canine or human NPHP5 transgenes. Mutant cone photoreceptors, which failed to form outer segments during development, reform this structure after treatment. Degenerating rod photoreceptor outer segments are stabilized and develop normal structure. This process begins within 8 weeks after treatment and remains stable throughout the 6-month posttreatment period. In both photoreceptor cell classes mislocalization of rod and cone opsins is minimized or reversed. Retinal function and functional vision are restored. Efficacy of gene therapy in this large animal ciliopathy model of Leber congenital amaurosis provides a path for translation to human treatment.


Assuntos
Proteínas de Ligação a Calmodulina/administração & dosagem , Dependovirus/genética , Amaurose Congênita de Leber/terapia , Células Fotorreceptoras Retinianas Cones/patologia , Animais , Proteínas de Ligação a Calmodulina/farmacologia , Modelos Animais de Doenças , Cães , Eletrorretinografia , Terapia Genética , Vetores Genéticos/administração & dosagem , Humanos , Amaurose Congênita de Leber/genética , Resultado do Tratamento
2.
Exp Eye Res ; 181: 72-84, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30653965

RESUMO

Chronic exposure of the retina to light and high concentrations of polyunsaturated fatty acid in photoreceptor cells make this tissue susceptible to oxidative damage. As retinal degenerative diseases are associated with photoreceptor degeneration, the antioxidant activity of both hydrogen sulfide (H2S) and glutathione (GSH) may play an important role in ameliorating disease progression. H2S production is driven by cystathionine-γ-lyase (CSE) and cystathionine-ß-synthase (CBS), the key enzymes that also drive transsulfuration pathway (TSP) necessary for GSH production. As it is currently unclear whether localized production of either H2S or GSH contributes to retinal homeostasis, we undertook a comparative analysis of CBS and CSE expression in canine, non-human primate (NHP) and human retinas to determine if these antioxidants could play a regulatory role in age-related or disease-associated retinal degeneration. Retinas from normal dogs, NHPs and humans were used for the study. Laser capture microdissection (LCM) was performed to isolate individual layers of the canine retina and analyze CBS and CSE gene expression by qRT-PCR. Immunohistochemistry and western blotting were performed for CBS and CSE labeling and protein expression in dog, NHP, and human retina, respectively. Using qRT-PCR, western blot, and immunohistochemistry (IHC), we showed that CBS and CSE are expressed in the canine, NHP, and human retina. IHC results from canine retina demonstrated increased expression levels of CBS but not CSE with post-developmental aging. IHC results also showed non-overlapping localization of both proteins with CBS presenting in rods, amacrine, horizontal, and nerve fiber cell layers while CSE was expressed by RPE, cones and Mϋller cells. Finally, we demonstrated that these enzymes localized to all three layers of canine, NHP and human retina: photoreceptors, outer plexiform layer (OPL) and notably in the ganglion cells layer/nerve fiber layer (GCL/NFL). QRT-PCR performed using RNA extracted from tissues isolated from these cell layers using laser capture microdissection (LCM) confirmed that each of CBS and CSE are expressed equally in these three layers. Together, these findings reveal that CSE and CBS are expressed in the retina, thereby supporting further studies to determine the role of H2S and these proteins in oxidative stress and apoptosis in retinal degenerative diseases.


Assuntos
Cistationina beta-Sintase/metabolismo , Cistationina gama-Liase/metabolismo , Retina/metabolismo , Animais , Western Blotting , Cães , Imuno-Histoquímica , Primatas
3.
Proc Natl Acad Sci U S A ; 115(36): E8547-E8556, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30127005

RESUMO

Inherited retinal degenerations are caused by mutations in >250 genes that affect photoreceptor cells or the retinal pigment epithelium and result in vision loss. For autosomal recessive and X-linked retinal degenerations, significant progress has been achieved in the field of gene therapy as evidenced by the growing number of clinical trials and the recent commercialization of the first gene therapy for a form of congenital blindness. However, despite significant efforts to develop a treatment for the most common form of autosomal dominant retinitis pigmentosa (adRP) caused by >150 mutations in the rhodopsin (RHO) gene, translation to the clinic has stalled. Here, we identified a highly efficient shRNA that targets human (and canine) RHO in a mutation-independent manner. In a single adeno-associated viral (AAV) vector we combined this shRNA with a human RHO replacement cDNA made resistant to RNA interference and tested this construct in a naturally occurring canine model of RHO-adRP. Subretinal vector injections led to nearly complete suppression of endogenous canine RHO RNA, while the human RHO replacement cDNA resulted in up to 30% of normal RHO protein levels. Noninvasive retinal imaging showed photoreceptors in treated areas were completely protected from retinal degeneration. Histopathology confirmed retention of normal photoreceptor structure and RHO expression in rod outer segments. Long-term (>8 mo) follow-up by retinal imaging and electroretinography indicated stable structural and functional preservation. The efficacy of this gene therapy in a clinically relevant large-animal model paves the way for treating patients with RHO-adRP.


Assuntos
Dependovirus , Técnicas de Introdução de Genes/métodos , Técnicas de Silenciamento de Genes/métodos , Terapia Genética/métodos , Vetores Genéticos , RNA Catalítico , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Retinose Pigmentar , Rodopsina , Animais , Cães , Células HEK293 , Humanos , RNA Catalítico/biossíntese , RNA Catalítico/genética , Células Fotorreceptoras Retinianas Bastonetes/patologia , Retinose Pigmentar/genética , Retinose Pigmentar/metabolismo , Retinose Pigmentar/patologia , Rodopsina/biossíntese , Rodopsina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA