Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 279: 121330, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35605418

RESUMO

L-cystine (L-cys) functionalized plasmonic silver nanomaterial (Ag NPs) was fabricated toward the selective and sensitive detection of paracetamol and cadmium. The prepared L-cys-Ag nanoparticles (NPs) were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction spectroscopy (XRD) and fourier transform infrared spectroscopy (FTIR) analyses. SEM imaging show that Ag NPs was decorated on the surface of L-cysteine 3D cubic nanosheet. L-cys-Ag NPs showed selective and sensitive detection towards paracetamol and cadmium. The interference study confirms that the presence of other metal ions didn't inhibit the detection of cadmium by L-cys-Ag NPs. The limit of detection of paracetamol and cadmium by L-cys-Ag NPs was calculated to be 1.2 and 2.82 nM respectively. In addition, the real sample detection of paracetamol on blood serum and urine, and cadmium on STP were performed and the recovery percentage was above 97%. Further, the real sample analysis was performed in tap and drinking water and the recovery percentage was more than 98%. The analytic logic gate on the multicolour detection of cadmium and paracetamol was performed for the semi-quantitative monitoring of paracetamol and cadmium by L-cys-Ag NPs. The developed L-cys-Ag NPs were found to be an effective tool for the monitoring of cadmium in environmental water bodies and paracetamol in blood and urine.


Assuntos
Nanopartículas Metálicas , Prata , Acetaminofen , Cádmio , Cistina , Nanopartículas Metálicas/química , Prata/química , Espectroscopia de Infravermelho com Transformada de Fourier
2.
Artigo em Inglês | MEDLINE | ID: mdl-25240142

RESUMO

The present study investigated the colorimetric detection of mercury (Hg(2+)) ions by using silver nanoparticles (Ag NPs) in the presence of glutathione. The nanoparticles used in the study were synthesized biologically by using Polyalthia longifolia leaf extract. The synthesized nanoparticles were characterized by UV-visible spectrophotometer, transmission electron microscope, X-ray diffraction, particle size analyzer and zeta sizer. The particles were spherical in shape and it possesses the effective diameter of 5 nm. The zeta potential of the particles was determined to be -28.6 mV. Ag NPs-glutathione conjugates were able to detect Hg(2+) in nanomolar level. Ag NPs-glutathione conjugates upon interaction with Hg(2+) changes from yellowish brown to pale yellow and finally colorless. The study may be applied for the qualitative and quantitative estimation of mercury at very low concentration.


Assuntos
Colorimetria/métodos , Glutationa/química , Mercúrio/análise , Nanopartículas Metálicas/química , Química Verde , Microscopia Eletrônica de Transmissão , Extratos Vegetais/química , Folhas de Planta/química , Polyalthia/química , Sensibilidade e Especificidade , Prata , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA