Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
J Med Genet ; 57(7): 454-460, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31988067

RESUMO

BACKGROUND: Pseudodiastrophic dysplasia (PDD) is a severe skeletal dysplasia associated with prenatal manifestation and early lethality. Clinically, PDD is classified as a 'dysplasia with multiple joint dislocations'; however, the molecular aetiology of the disorder is currently unknown. METHODS: Whole exome sequencing (WES) was performed on three patients from two unrelated families, clinically diagnosed with PDD, in order to identify the underlying genetic cause. The functional effects of the identified variants were characterised using primary cells and human cell-based overexpression assays. RESULTS: WES resulted in the identification of biallelic variants in the established skeletal dysplasia genes, B3GAT3 (family 1) and CANT1 (family 2). Mutations in these genes have previously been reported to cause 'multiple joint dislocations, short stature, and craniofacial dysmorphism with or without congenital heart defects' ('JDSCD'; B3GAT3) and Desbuquois dysplasia 1 (CANT1), disorders in the same nosological group as PDD. Follow-up of the B3GAT3 variants demonstrated significantly reduced B3GAT3/GlcAT-I expression. Downstream in vitro functional analysis revealed abolished biosynthesis of glycosaminoglycan side chains on proteoglycans. Functional evaluation of the CANT1 variant showed impaired nucleotidase activity, which results in inhibition of glycosaminoglycan synthesis through accumulation of uridine diphosphate. CONCLUSION: For the families described in this study, the PDD phenotype was caused by mutations in the known skeletal dysplasia genes B3GAT3 and CANT1, demonstrating the advantage of genomic analyses in delineating the molecular diagnosis of skeletal dysplasias. This finding expands the phenotypic spectrum of B3GAT3-related and CANT1-related skeletal dysplasias to include PDD and highlights the significant phenotypic overlap of conditions within the proteoglycan biosynthesis pathway.


Assuntos
Nanismo/genética , Glucuronosiltransferase/genética , Cardiopatias Congênitas/genética , Hérnia Umbilical/genética , Nucleotidases/genética , Nanismo/patologia , Feminino , Regulação da Expressão Gênica/genética , Predisposição Genética para Doença , Cardiopatias Congênitas/patologia , Hérnia Umbilical/patologia , Humanos , Masculino , Mutação de Sentido Incorreto/genética , Fenótipo , Gravidez , Proteoglicanas , Sequenciamento do Exoma
2.
Hum Mutat ; 41(3): 655-667, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31705726

RESUMO

Congenital disorders of glycosylation (CDGs) comprise a large number of inherited metabolic defects that affect the biosynthesis and attachment of glycans. CDGs manifest as a broad spectrum of disease, most often including neurodevelopmental and skeletal abnormalities and skin laxity. Two patients with biallelic CSGALNACT1 variants and a mild skeletal dysplasia have been described previously. We investigated two unrelated patients presenting with short stature with advanced bone age, facial dysmorphism, and mild language delay, in whom trio-exome sequencing identified novel biallelic CSGALNACT1 variants: compound heterozygosity for c.1294G>T (p.Asp432Tyr) and the deletion of exon 4 that includes the start codon in one patient, and homozygosity for c.791A>G (p.Asn264Ser) in the other patient. CSGALNACT1 encodes CSGalNAcT-1, a key enzyme in the biosynthesis of sulfated glycosaminoglycans chondroitin and dermatan sulfate. Biochemical studies demonstrated significantly reduced CSGalNAcT-1 activity of the novel missense variants, as reported previously for the p.Pro384Arg variant. Altered levels of chondroitin, dermatan, and heparan sulfate moieties were observed in patients' fibroblasts compared to controls. Our data indicate that biallelic loss-of-function mutations in CSGALNACT1 disturb glycosaminoglycan synthesis and cause a mild skeletal dysplasia with advanced bone age, CSGALNACT1-CDG.


Assuntos
Defeitos Congênitos da Glicosilação/diagnóstico , Defeitos Congênitos da Glicosilação/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Anormalidades Musculoesqueléticas/diagnóstico , Anormalidades Musculoesqueléticas/genética , Mutação , N-Acetilgalactosaminiltransferases/genética , Sequência de Aminoácidos , Osso e Ossos/anormalidades , Osso e Ossos/diagnóstico por imagem , Fácies , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Recém-Nascido , Mutação com Perda de Função , Masculino , Mutação de Sentido Incorreto , Linhagem , Fenótipo
3.
FEBS J ; 286(15): 2921-2936, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30932321

RESUMO

Chondroitin sulfate E (CS-E) is a glycosaminoglycan containing type-E disaccharide units (sulfated at C-4 and C-6 of N-acetylgalactosamine). CS-E is covalently linked to a core protein to form chondroitin sulfate proteoglycans (PGs) that are secreted or associated with the plasma membrane of several types of cells. CS-E-containing PGs selectively interact with growth factors and chemokines and control various cellular and/or tissue processes. Angiogenesis is a process that is highly regulated in physiological conditions but deregulated in pathologies, leading to excess or deficient blood vessel formation. Angiogenesis regulation is orchestrated by numerous growth factors, such as vascular endothelial growth factor A, fibroblast growth factors and pleiotrophin, whose functions can be affected by CS-containing PGs. In the present review, we focus on the emerging area of CS-mediated angiogenesis and particularly on the critical assessment of data related to a potential role of CS-E in controlling endothelial cell functions, focusing on angiogenesis regulation and vascular homeostasis in health and disease.


Assuntos
Sulfatos de Condroitina/metabolismo , Neovascularização Fisiológica , Animais , Vasos Sanguíneos/metabolismo , Vasos Sanguíneos/fisiologia , Quimiocinas/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo
4.
PLoS Genet ; 14(3): e1007242, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29561836

RESUMO

Gerodermia osteodysplastica (GO) is characterized by skin laxity and early-onset osteoporosis. GORAB, the responsible disease gene, encodes a small Golgi protein of poorly characterized function. To circumvent neonatal lethality of the GorabNull full knockout, Gorab was conditionally inactivated in mesenchymal progenitor cells (Prx1-cre), pre-osteoblasts (Runx2-cre), and late osteoblasts/osteocytes (Dmp1-cre), respectively. While in all three lines a reduction in trabecular bone density was evident, only GorabPrx1 and GorabRunx2 mutants showed dramatically thinned, porous cortical bone and spontaneous fractures. Collagen fibrils in the skin of GorabNull mutants and in bone of GorabPrx1 mutants were disorganized, which was also seen in a bone biopsy from a GO patient. Measurement of glycosaminoglycan contents revealed a reduction of dermatan sulfate levels in skin and cartilage from GorabNull mutants. In bone from GorabPrx1 mutants total glycosaminoglycan levels and the relative percentage of dermatan sulfate were both strongly diminished. Accordingly, the proteoglycans biglycan and decorin showed reduced glycanation. Also in cultured GORAB-deficient fibroblasts reduced decorin glycanation was evident. The Golgi compartment of these cells showed an accumulation of decorin, but reduced signals for dermatan sulfate. Moreover, we found elevated activation of TGF-ß in GorabPrx1 bone tissue leading to enhanced downstream signalling, which was reproduced in GORAB-deficient fibroblasts. Our data suggest that the loss of Gorab primarily perturbs pre-osteoblasts. GO may be regarded as a congenital disorder of glycosylation affecting proteoglycan synthesis due to delayed transport and impaired posttranslational modification in the Golgi compartment.


Assuntos
Doenças Ósseas/congênito , Nanismo/metabolismo , Osteoblastos/patologia , Proteoglicanas/metabolismo , Dermatopatias Genéticas/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animais , Doenças Ósseas/metabolismo , Doenças Ósseas/patologia , Diferenciação Celular , Decorina/metabolismo , Dermatan Sulfato/metabolismo , Modelos Animais de Doenças , Nanismo/patologia , Feminino , Fraturas Ósseas/genética , Glicosilação , Proteínas da Matriz do Complexo de Golgi , Células-Tronco Mesenquimais/patologia , Células-Tronco Mesenquimais/fisiologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Osteoblastos/metabolismo , Transdução de Sinais , Dermatopatias Genéticas/patologia , Proteínas de Transporte Vesicular/genética
5.
Pharmaceuticals (Basel) ; 10(2)2017 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-28346368

RESUMO

The indispensable roles of dermatan sulfate-proteoglycans (DS-PGs) have been demonstrated in various biological events including construction of the extracellular matrix and cell signaling through interactions with collagen and transforming growth factor-ß, respectively. Defects in the core proteins of DS-PGs such as decorin and biglycan cause congenital stromal dystrophy of the cornea, spondyloepimetaphyseal dysplasia, and Meester-Loeys syndrome. Furthermore, mutations in human genes encoding the glycosyltransferases, epimerases, and sulfotransferases responsible for the biosynthesis of DS chains cause connective tissue disorders including Ehlers-Danlos syndrome and spondyloepimetaphyseal dysplasia with joint laxity characterized by skin hyperextensibility, joint hypermobility, and tissue fragility, and by severe skeletal disorders such as kyphoscoliosis, short trunk, dislocation, and joint laxity. Glycobiological approaches revealed that mutations in DS-biosynthetic enzymes cause reductions in enzymatic activities and in the amount of synthesized DS and also disrupt the formation of collagen bundles. This review focused on the growing number of glycobiological studies on recently reported genetic diseases caused by defects in the biosynthesis of DS and DS-PGs.

6.
Hum Mutat ; 38(1): 34-38, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27599773

RESUMO

Mutations in genes encoding enzymes responsible for the biosynthesis and structural diversity of glycosaminoglycans (GAGs) cause a variety of disorders affecting bone and connective tissues, including Desbuquois dysplasia (DD). In an infant with prenatal-onset disproportionate short stature, joint laxity, and radiographic findings typical for DD compound-heterozygosity for a large intragenic deletion, and a p.Pro384Arg missense mutation in CSGALNACT1 was found. CSGALNACT1 encodes chondroitin sulfate N-acetylgalactosaminyltransferase-1 (CSGalNAcT-1, ChGn-1), which initiates chondroitin sulfate (CS) chain biosynthesis on the so-called GAG-protein linker region tetrasaccharide. Biochemical studies revealed a reduced GalNAc-transferase activity of the Arg-384 mutant protein, whereas no differences in proteoglycan synthesis in fibroblasts and the GAG content in the urine were found between patient and controls. This is the first description of bi-allelic loss-of-function mutations in CSGALNACT1 that produce a skeletal dysplasia reminiscent of the skeletal dysplasia of Csgalnact1-/- mice, and adds to the genetic heterogeneity of DD.


Assuntos
Instabilidade Articular/diagnóstico , Instabilidade Articular/genética , Anormalidades Musculoesqueléticas/diagnóstico , Anormalidades Musculoesqueléticas/genética , N-Acetilgalactosaminiltransferases/deficiência , Pré-Escolar , Análise Mutacional de DNA , Ativação Enzimática , Éxons , Feminino , Expressão Gênica , Heterozigoto , Humanos , Lactente , Mutação , N-Acetilgalactosaminiltransferases/genética , N-Acetilgalactosaminiltransferases/metabolismo , Fenótipo , Radiografia , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Deleção de Sequência , Índice de Gravidade de Doença
7.
J Crohns Colitis ; 11(2): 221-228, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27484097

RESUMO

BACKGROUND AND AIMS: Carbohydrate sulphotransferase 15 [CHST15] is a specific enzyme biosynthesizing chondroitin sulphate E that binds various pathogenic mediators and is known to create local fibrotic lesions. We evaluated the safety of STNM01, a synthetic double-stranded RNA oligonucleotide directed against CHST15, in Crohn's disease [CD] patients whose mucosal lesions were refractory to conventional therapy. METHODS: This was a randomized, double-blind, placebo-controlled, concentration-escalation study of STNM01 by a single-dose endoscopic submucosal injection in 18 CD patients. Cohorts of increasing concentration of STNM01 were enrolled sequentially as 2.5nM [n = 3], 25nM [n = 3], and 250nM [n = 3] were applied. A cohort of placebo [n = 3] was included in each concentration. Safety was monitored for 30 days. Pharmacokinetics was monitored for 24h. The changes from baseline in the segmental Simple Endoscopic Score for CD [SES-CD] as well as the histological fibrosis score were evaluated. RESULTS: STNM01 was well tolerated and showed no drug-related adverse effects in any cohort of treated patients. There were no detectable plasma concentrations of STNM01 at all measured time points in all treatment groups. Seven of nine subjects who received STNM01 showed reduction in segmental SES-CD at Day 30, when compared with those who received placebo. Histological analyses of biopsy specimens revealed that STNM01 reduced the extent of fibrosis. CONCLUSION: Local application of STNM01 is safe and well tolerated in CD patients with active mucosal lesions.


Assuntos
Sulfatos de Condroitina , Doença de Crohn , Mucosa Intestinal , Glicoproteínas de Membrana , RNA Interferente Pequeno/farmacologia , Sulfotransferases , Biópsia/métodos , Sulfatos de Condroitina/biossíntese , Sulfatos de Condroitina/metabolismo , Doença de Crohn/diagnóstico , Doença de Crohn/tratamento farmacológico , Doença de Crohn/patologia , Relação Dose-Resposta a Droga , Monitoramento de Medicamentos/métodos , Ressecção Endoscópica de Mucosa/métodos , Feminino , Fibrose , Fármacos Gastrointestinais/farmacologia , Humanos , Injeções Intralesionais , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Masculino , Glicoproteínas de Membrana/antagonistas & inibidores , Glicoproteínas de Membrana/metabolismo , Oligorribonucleotídeos Antissenso/farmacologia , Gravidade do Paciente , Sulfotransferases/antagonistas & inibidores , Sulfotransferases/metabolismo , Resultado do Tratamento
8.
PLoS One ; 11(7): e0158967, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27410685

RESUMO

Induction of mucosal healing (MH) is an important treatment goal in inflammatory bowel disease (IBD). Although the molecular mechanisms underlying MH in IBD is not fully explored, local fibrosis would contribute to interfere mucosal repair. Carbohydrate sulfotransferase 15 (CHST15), which catalyzes sulfation of chondroitin sulfate to produce rare E-disaccharide units, is a novel mediator to create local fibrosis. Here we have used siRNA-based approach of silencing CHST15 in dextran sulfate sodium (DSS) induced colitis in mice, human colon fibroblasts and cancer cell lines. In a DSS-induced acute colitis model, CHST15 siRNA reduced CHST15 mRNA in the colon, serum IL-6, disease activity index (DAI) and accumulation of F4/80+ macrophages and ER-TR7+ fibroblasts, while increased Ki-67+ epithelial cells. In DSS-induced chronic colitis models, CHST15 siRNA reduced CHST15 mRNA in the colon, DAI, alpha-smooth muscle actin+ fibroblasts and collagen deposition, while enhanced MH as evidenced by reduced histological and endoscopic scores. We also found that endoscopic submucosal injection achieved effective pancolonic delivery of CHST15 siRNA in mice. In human CCD-18 Co cells, CHST15 siRNA inhibited the expression of CHST15 mRNA and selectively reduced E-units, a specific product biosynthesized by CHST15, in the culture supernatant. CHST15 siRNA significantly suppressed vimentin in both TGF-ß-stimulated CCD18-Co cells and HCT116 cells while up-regulated BMP7 and E-cadherin in HCT116 cells. The present study demonstrated that blockade CHST15 represses colonic fibrosis and enhances MH partly though reversing EMT pathway, illustrating a novel therapeutic opportunity to refractory and fibrotic lesions in IBD.


Assuntos
Colite/enzimologia , Colite/patologia , Mucosa Intestinal/patologia , Sulfotransferases/metabolismo , Doença Aguda , Animais , Colite/genética , Colo/patologia , Transição Epitelial-Mesenquimal , Feminino , Fibroblastos/patologia , Fibrose , Regulação da Expressão Gênica , Inativação Gênica , Humanos , Camundongos , Camundongos Endogâmicos C57BL , RNA Interferente Pequeno/genética , Transdução de Sinais , Sulfotransferases/deficiência , Sulfotransferases/genética , Carboidrato Sulfotransferases
9.
Biomed Res Int ; 2015: 861752, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26582078

RESUMO

Glycosaminoglycans, including chondroitin, dermatan, and heparan sulfate, have various roles in a wide range of biological events such as cell signaling, cell proliferation, tissue morphogenesis, and interactions with various growth factors. Their polysaccharides covalently attach to the serine residues on specific core proteins through the common linker region tetrasaccharide, -xylose-galactose-galactose-glucuronic acid, which is produced through the stepwise addition of respective monosaccharides by four distinct glycosyltransferases. Mutations in the human genes encoding the glycosyltransferases responsible for the biosynthesis of the linker region tetrasaccharide cause a number of genetic disorders, called glycosaminoglycan linkeropathies, including Desbuquois dysplasia type 2, spondyloepimetaphyseal dysplasia, Ehlers-Danlos syndrome, and Larsen syndrome. This review focused on recent studies on genetic diseases caused by defects in the biosynthesis of the common linker region tetrasaccharide.


Assuntos
Anormalidades Craniofaciais/genética , Nanismo/genética , Síndrome de Ehlers-Danlos/genética , Glicosiltransferases/genética , Instabilidade Articular/genética , Ossificação Heterotópica/genética , Osteocondrodisplasias/genética , Polidactilia/genética , Proliferação de Células/genética , Condroitina/metabolismo , Anormalidades Craniofaciais/enzimologia , Anormalidades Craniofaciais/metabolismo , Dermatan Sulfato/metabolismo , Nanismo/enzimologia , Nanismo/metabolismo , Síndrome de Ehlers-Danlos/enzimologia , Síndrome de Ehlers-Danlos/metabolismo , Heparitina Sulfato/metabolismo , Humanos , Instabilidade Articular/enzimologia , Instabilidade Articular/metabolismo , Morfogênese/genética , Mutação , Ossificação Heterotópica/enzimologia , Ossificação Heterotópica/metabolismo , Osteocondrodisplasias/enzimologia , Osteocondrodisplasias/metabolismo , Polidactilia/enzimologia , Polidactilia/metabolismo
10.
Curr Opin Struct Biol ; 34: 35-42, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26164146

RESUMO

Recent functional studies on chondroitin sulfate-dermatan sulfate (CS-DS) demonstrated its indispensable roles in various biological events including brain development and cancer. CS-DS proteoglycans exert their physiological activity through interactions with specific proteins including growth factors, cell surface receptors, and matrix proteins. The characterization of these interactions is essential for regulating the biological functions of CS-DS proteoglycans. Although amino acid sequences on the bioactive proteins required for these interactions have already been elucidated, the specific saccharide sequences involved in the binding of CS-DS to target proteins have not yet been sufficiently identified. In this review, recent findings are described on the interaction between CS-DS and some proteins which are especially involved in the central nervous system and cancer development/metastasis.


Assuntos
Sulfatos de Condroitina/química , Dermatan Sulfato/análogos & derivados , Proteínas da Matriz Extracelular/química , Peptídeos e Proteínas de Sinalização Intercelular/química , Receptores de Superfície Celular/química , Animais , Sulfatos de Condroitina/metabolismo , Dermatan Sulfato/química , Dermatan Sulfato/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Metástase Neoplásica , Neoplasias/metabolismo , Neoplasias/patologia , Plasticidade Neuronal , Neurônios/metabolismo , Ligação Proteica , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Receptores de Superfície Celular/metabolismo , Via de Sinalização Wnt
11.
Hum Genet ; 134(7): 691-704, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25893793

RESUMO

We describe a large family with disproportionate short stature and bone dysplasia from Nias in which we observed differences in severity when comparing the phenotypes of affected individuals from two remote branches. We conducted a linkage scan in the more severely affected family branch and determined a critical interval of 4.7 cM on chromosome 11. Sequencing of the primary candidate gene TBX10 did not reveal a disease-causing variant. When performing whole exome sequencing we noticed a homozygous missense variant in B3GAT3, c.419C>T [p.(Pro140Leu)]. B3GAT3 encodes ß-1,3-glucuronyltransferase-I (GlcAT-I). GlcAT-I catalyzes an initial step of proteoglycan synthesis and the mutation p. (Pro140Leu) lies within the donor substrate-binding subdomain of the catalytic domain. In contrast to the previously published mutation in B3GAT3, c.830G>A [p.(Arg277Gln)], no heart phenotype could be detected in our family. Functional studies revealed a markedly reduced GlcAT-I activity in lymphoblastoid cells from patients when compared to matched controls. Moreover, relative numbers of glycosaminoglycan (GAG) side chains were decreased in patient cells. We found that Pro140Leu-mutant GlcAT-I cannot efficiently transfer GlcA to the linker region trisaccharide. This failure results in a partial deficiency of both chondroitin sulfate and heparan sulfate chains. Since the phenotype of the Nias patients differs from the Larsen-like syndrome described for patients with mutation p.(Arg277Gln), we suggest mutation B3GAT3:p.(Pro140Leu) to cause a different type of GAG linkeropathy showing no involvement of the heart.


Assuntos
Doenças do Desenvolvimento Ósseo/genética , Doenças Genéticas Inatas/genética , Mutação de Sentido Incorreto , Adolescente , Adulto , Substituição de Aminoácidos , Doenças do Desenvolvimento Ósseo/enzimologia , Doenças do Desenvolvimento Ósseo/patologia , Criança , Pré-Escolar , Feminino , Doenças Genéticas Inatas/enzimologia , Doenças Genéticas Inatas/patologia , Glucuronosiltransferase/metabolismo , Humanos , Lactente , Masculino , Linhagem , Estrutura Terciária de Proteína
12.
Mol Cancer ; 14: 19, 2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25644401

RESUMO

BACKGROUND: Receptor protein tyrosine phosphatase beta/zeta (RPTPß/ζ) is a chondroitin sulphate (CS) transmembrane protein tyrosine phosphatase and is a receptor for pleiotrophin (PTN). RPTPß/ζ interacts with ανß3 on the cell surface and upon binding of PTN leads to c-Src dephosphorylation at Tyr530, ß3 Tyr773 phosphorylation, cell surface nucleolin (NCL) localization and stimulation of cell migration. c-Src-mediated ß3 Tyr773 phosphorylation is also observed after vascular endothelial growth factor 165 (VEGF165) stimulation of endothelial cells and is essential for VEGF receptor type 2 (VEGFR2) - ανß3 integrin association and subsequent signaling. In the present work, we studied whether RPTPß/ζ mediates angiogenic actions of VEGF. METHODS: Human umbilical vein endothelial, human glioma U87MG and stably transfected Chinese hamster ovary cells expressing different ß3 subunits were used. Protein-protein interactions were studied by a combination of immunoprecipitation/Western blot, immunofluorescence and proximity ligation assays, properly quantified as needed. RPTPß/ζ expression was down-regulated using small interference RNA technology. Migration assays were performed in 24-well microchemotaxis chambers, using uncoated polycarbonate membranes with 8 µm pores. RESULTS: RPTPß/ζ mediates VEGF165-induced c-Src-dependent ß3 Tyr773 phosphorylation, which is required for VEGFR2-ανß3 interaction and the downstream activation of phosphatidylinositol 3-kinase (PI3K) and cell surface NCL localization. RPTPß/ζ directly interacts with VEGF165, and this interaction is not affected by bevacizumab, while it is interrupted by both CS-E and PTN. Down-regulation of RPTPß/ζ by siRNA or administration of exogenous CS-E abolishes VEGF165-induced endothelial cell migration, while PTN inhibits the migratory effect of VEGF165 to the levels of its own effect. CONCLUSIONS: These data identify RPTPß/ζ as a cell membrane binding partner for VEGF that regulates angiogenic functions of endothelial cells and suggest that it warrants further validation as a potential target for development of additive or alternative anti-VEGF therapies.


Assuntos
Ligação Proteica/genética , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Células CHO , Linhagem Celular , Movimento Celular/genética , Cricetulus , Regulação para Baixo/genética , Glioma , Células Endoteliais da Veia Umbilical Humana , Humanos , Integrinas/genética , Integrinas/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação/genética , Mapas de Interação de Proteínas/genética , RNA Interferente Pequeno/genética , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores/genética , Fator A de Crescimento do Endotélio Vascular/genética
13.
Glycoconj J ; 31(6-7): 461-7, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25227175

RESUMO

Various tumor cells exhibit structural alterations in the sulfated modifications to glycosaminoglycans (GAGs). The altered expression of chondroitin sulfate (CS) and heparan sulfate (HS) on the surfaces of tumor cells is known to play a key role in malignant transformation and tumor metastasis. The receptor molecule for the CS chains containing E-disaccharide units (CS-E) expressed on Lewis lung carcinoma (LLC) cells was recently revealed to be Receptor for Advanced Glycation End-products (RAGE). RAGE is also involved in the development of various pathological conditions including aging, infection, pulmonary fibrosis, diabetes, and Alzheimer's disease, by binding to a wide range of ligands. RAGE binds strongly not only to CS-E, but also to HS-expressing LLC cells. Recombinant RAGE bound CS-E and HS with high affinity. Furthermore, in a mouse model, the colonization of the lungs by LLC cells was inhibited by intravenously injected CS-E, an anti-CS-E antibody, or an anti-RAGE antibody. These findings demonstrated that RAGE is at least one of the critical receptors for CS and HS chains expressed on the tumor cell surface and is involved in experimental lung metastasis, and also that CS/HS and RAGE are potential molecular targets for the treatment of pulmonary metastasis. We, hence, reviewed these findings and also several chemically synthesized small GAGmimetics that exhibit potent anti-metastatic and/or anti-tumor activities.


Assuntos
Glicosaminoglicanos/metabolismo , Mimetismo Molecular , Metástase Neoplásica , Neoplasias/patologia , Polissacarídeos/metabolismo , Progressão da Doença
14.
J Biol Chem ; 289(38): 26584-26596, 2014 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-25107907

RESUMO

Galnt3, UDP-N-acetyl-α-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase 3, transfers N-acetyl-D-galactosamine to serine and threonine residues, initiating mucin type O-glycosylation of proteins. We searched the target genes of Runx2, which is an essential transcription factor for chondrocyte maturation, in chondrocytes and found that Galnt3 expression was up-regulated by Runx2 and severely reduced in Runx2(-/-) cartilaginous skeletons. To investigate the function of Galnt3 in chondrocytes, we generated Galnt3(-/-) mice and chondrocyte-specific Galnt3 transgenic mice under the control of the Col2a1 promoter-enhancer. Galnt3(-/-) mice showed a delay in endochondral ossification and shortened limbs at embryonic day 16.5, suggesting that Galnt3 is involved in chondrocyte maturation. Galnt3 transgenic mice presented dwarfism, the chondrocyte maturation was retarded, the cell cycle in chondrocytes was accelerated, premature chondrocyte apoptosis occurred, and the growth plates were disorganized. The binding of Vicia villosa agglutinin, which recognizes the Tn antigen (GalNAc-O-Ser/Thr), was drastically increased in chondrocytes, and aggrecan (Acan) was highly enriched with Tn antigen. However, safranin O staining, which recognizes glycosaminoglycans (GAGs), and Acan were severely reduced. Chondroitin sulfate was reduced in amount, but the elongation of chondroitin sulfate chains had not been severely disturbed in the isolated GAGs. These findings indicate that overexpression of Galnt3 in chondrocytes caused dwarfism due to the increase of mucin-type O-glycans and the reduction of GAGs, probably through competition with xylosyltransferases, which initiate GAG chains by attaching O-linked xylose to serine residues, suggesting a negative effect of Galnt family proteins on Acan deposition in addition to the positive effect of Galnt3 on chondrocyte maturation.


Assuntos
Condrócitos/metabolismo , Sulfatos de Condroitina/metabolismo , Nanismo/metabolismo , N-Acetilgalactosaminiltransferases/metabolismo , Processamento de Proteína Pós-Traducional , Agrecanas/genética , Agrecanas/metabolismo , Animais , Apoptose , Cartilagem/metabolismo , Cartilagem/patologia , Proliferação de Células , Células Cultivadas , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Feminino , Expressão Gênica , Glicosilação , Lâmina de Crescimento/metabolismo , Lâmina de Crescimento/patologia , Masculino , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , N-Acetilgalactosaminiltransferases/genética , Osteogênese , Polipeptídeo N-Acetilgalactosaminiltransferase
15.
Biomed Res Int ; 2014: 495764, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25126564

RESUMO

Glycosaminoglycans (GAGs) are constructed through the stepwise addition of respective monosaccharides by various glycosyltransferases and maturated by epimerases and sulfotransferases. The structural diversity of GAG polysaccharides, including their sulfation patterns and sequential arrangements, is essential for a wide range of biological activities such as cell signaling, cell proliferation, tissue morphogenesis, and interactions with various growth factors. Studies using knockout mice of enzymes responsible for the biosynthesis of the GAG side chains of proteoglycans have revealed their physiological functions. Furthermore, mutations in the human genes encoding glycosyltransferases, sulfotransferases, and related enzymes responsible for the biosynthesis of GAGs cause a number of genetic disorders including chondrodysplasia, spondyloepiphyseal dysplasia, and Ehlers-Danlos syndromes. This review focused on the increasing number of glycobiological studies on knockout mice and genetic diseases caused by disturbances in the biosynthetic enzymes for GAGs.


Assuntos
Síndrome de Ehlers-Danlos/genética , Glicosaminoglicanos/genética , Glicosiltransferases/genética , Osteocondrodisplasias/genética , Animais , Proliferação de Células , Síndrome de Ehlers-Danlos/patologia , Glicosaminoglicanos/biossíntese , Humanos , Camundongos Knockout , Morfogênese/genética , Mutação , Osteocondrodisplasias/patologia , Transdução de Sinais
16.
Hum Mutat ; 34(10): 1381-6, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23824674

RESUMO

Brachyolmia is a heterogeneous skeletal dysplasia characterized by generalized platyspondyly without significant long-bone abnormalities. Based on the mode of inheritance and radiographic features, at least three types of brachyolmia have been postulated. We recently identified an autosomal recessive form of brachyolmia that is caused by loss-of-function mutations of PAPSS2, the gene encoding PAPS (3'-phosphoadenosine 5'-phosphosulfate) synthase 2. To understand brachyolmia caused by PAPSS2 mutations (PAPSS2-brachyolmia), we extended our PAPSS2 mutation analysis to 13 patients from 10 families and identified homozygous or compound heterozygous mutations in all. Nine different mutations were found: three splice donor-site mutations, three missense mutations, and three insertion or deletion mutations within coding regions. In vitro enzyme assays showed that the missense mutations were also loss-of-function mutations. Phenotypic characteristics of PAPSS2-brachyolmia include short-trunk short stature, normal intelligence and facies, spinal deformity, and broad proximal interphalangeal joints. Radiographic features include platyspondyly with rectangular vertebral bodies and irregular end plates, broad ilia, metaphyseal changes of the proximal femur, including short femoral neck and striation, and dysplasia of the short tubular bones. PAPSS2-brachyolmia includes phenotypes of the conventional clinical concept of brachyolmia, the Hobaek and Toledo types, and is associated with abnormal androgen metabolism.


Assuntos
Genes Recessivos , Complexos Multienzimáticos/genética , Mutação , Osteocondrodisplasias/diagnóstico por imagem , Osteocondrodisplasias/genética , Sulfato Adenililtransferase/genética , Pré-Escolar , Consanguinidade , Ativação Enzimática , Éxons , Feminino , Heterozigoto , Homozigoto , Humanos , Íntrons , Masculino , Complexos Multienzimáticos/metabolismo , Mutação de Sentido Incorreto , Osteocondrodisplasias/metabolismo , Fenótipo , Radiografia , Sulfato Adenililtransferase/metabolismo
17.
Hum Mol Genet ; 22(18): 3761-72, 2013 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-23704329

RESUMO

The sulfated polysaccharide dermatan sulfate (DS) forms proteoglycans with a number of distinct core proteins. Iduronic acid-containing domains in DS have a key role in mediating the functions of DS proteoglycans. Two tissue-specific DS epimerases, encoded by DSE and DSEL, and a GalNAc-4-O-sulfotransferase encoded by CHST14 are necessary for the formation of these domains. CHST14 mutations were previously identified for patients with the musculocontractural type of Ehlers-Danlos syndrome (MCEDS). We now identified a homozygous DSE missense mutation (c.803C>T, p.S268L) by the positional candidate approach in a male child with MCEDS, who was born to consanguineous parents. Heterologous expression of mutant full-length and soluble recombinant DSE proteins showed a loss of activity towards partially desulfated DS. Patient-derived fibroblasts also showed a significant reduction in epimerase activity. The amount of DS disaccharides was markedly decreased in the conditioned medium and the cell fraction from cultured fibroblasts of the patient when compared with a healthy control subject, whereas no apparent difference was observed in the chondroitin sulfate (CS) chains from the conditioned media. However, the total amount of CS disaccharides in the cell fraction from the patient was increased ∼1.5-fold, indicating an increased synthesis or a reduced conversion of CS chains in the cell fraction. Stable transfection of patient fibroblasts with a DSE expression vector increased the amount of secreted DS disaccharides. DSE deficiency represents a specific defect of DS biosynthesis. We demonstrate locus heterogeneity in MCEDS and provide evidence for the importance of DS in human development and extracellular matrix maintenance.


Assuntos
Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Síndrome de Ehlers-Danlos/genética , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Sulfotransferases/genética , Células Cultivadas , Pré-Escolar , Consanguinidade , Proteínas de Ligação a DNA/deficiência , Decorina/metabolismo , Dermatan Sulfato/biossíntese , Dissacarídeos/metabolismo , Síndrome de Ehlers-Danlos/metabolismo , Matriz Extracelular/metabolismo , Heterogeneidade Genética , Humanos , Masculino , Mutação de Sentido Incorreto , Proteínas de Neoplasias/deficiência , Sulfotransferases/metabolismo
18.
Am J Hum Genet ; 92(6): 927-34, 2013 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-23664117

RESUMO

Proteoglycans (PGs) are a major component of the extracellular matrix in many tissues and function as structural and regulatory molecules. PGs are composed of core proteins and glycosaminoglycan (GAG) side chains. The biosynthesis of GAGs starts with the linker region that consists of four sugar residues and is followed by repeating disaccharide units. By exome sequencing, we found that B3GALT6 encoding an enzyme involved in the biosynthesis of the GAG linker region is responsible for a severe skeletal dysplasia, spondyloepimetaphyseal dysplasia with joint laxity type 1 (SEMD-JL1). B3GALT6 loss-of-function mutations were found in individuals with SEMD-JL1 from seven families. In a subsequent candidate gene study based on the phenotypic similarity, we found that B3GALT6 is also responsible for a connective tissue disease, Ehlers-Danlos syndrome (progeroid form). Recessive loss-of-function mutations in B3GALT6 result in a spectrum of disorders affecting a broad range of skeletal and connective tissues characterized by lax skin, muscle hypotonia, joint dislocation, and spinal deformity. The pleiotropic phenotypes of the disorders indicate that B3GALT6 plays a critical role in a wide range of biological processes in various tissues, including skin, bone, cartilage, tendon, and ligament.


Assuntos
Anormalidades Múltiplas/genética , Galactosiltransferases/genética , Instabilidade Articular/genética , Mutação de Sentido Incorreto , Osteocondrodisplasias/genética , Adulto , Criança , Pré-Escolar , Feminino , Estudos de Associação Genética , Glicosaminoglicanos/biossíntese , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Instabilidade Articular/enzimologia , Masculino , Osteocondrodisplasias/enzimologia , Análise de Sequência de DNA
19.
Biomed Res Int ; 2013: 656319, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23555092

RESUMO

Chondroitin sulfate (CS) containing E-disaccharide units, glucuronic acid-N-acetylgalactosamine(4, 6-O-disulfate), at surfaces of tumor cells plays a key role in tumor metastasis. However, the molecular mechanism of the metastasis involving the CS chain-containing E-units is not fully understood. In this study, to clarify the role of E-units in the metastasis and to search for potential molecular targets for anticancer drugs, the isolation and characterization of Lewis lung carcinoma (LLC) cells stably downregulated by the knockdown for the gene encoding N-acetylgalactosamine 4-O-sulfate 6-O-sulfotransferase (GalNAc4S-6ST), which is responsible for the formation of E-units in CS chains, were performed. Knockdown of GalNAc4S-6ST in LLC cells resulted in a reduction in the proportion of E-units, in adhesiveness to extracellular matrix adhesion molecules and in proliferation in vitro. Furthermore, the stable downregulation of GalNAc4S-6ST expression in LLC cells markedly inhibited the colonization of the lungs by inoculated LLC cells and invasive capacity of LLC cells. These results provide clear evidence that CS chain-containing E-units and/or GalNAc4S-6ST play a crucial role in pulmonary metastasis at least through the increased adhesion and the invasive capacity of LLC cells and also provides insights into future drug targets for anticancer treatment.


Assuntos
Carcinoma Pulmonar de Lewis/genética , Sulfatos de Condroitina/biossíntese , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/secundário , Sulfotransferases/biossíntese , Animais , Carcinoma Pulmonar de Lewis/enzimologia , Carcinoma Pulmonar de Lewis/patologia , Adesão Celular , Linhagem Celular Tumoral , Proliferação de Células , Regulação para Baixo , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/patologia , Camundongos , Terapia de Alvo Molecular , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Sulfotransferases/genética
20.
J Biol Chem ; 288(13): 9321-33, 2013 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-23395820

RESUMO

Mutant alleles of EXT1 or EXT2, two members of the EXT gene family, are causative agents in hereditary multiple exostoses, and their gene products function together as a polymerase in the biosynthesis of heparan sulfate. EXTL2, one of three EXT-like genes in the human genome that are homologous to EXT1 and EXT2, encodes a transferase that adds not only GlcNAc but also N-acetylgalactosamine to the glycosaminoglycan (GAG)-protein linkage region via an α1,4-linkage. However, both the role of EXTL2 in the biosynthesis of GAGs and the biological significance of EXTL2 remain unclear. Here we show that EXTL2 transfers a GlcNAc residue to the tetrasaccharide linkage region that is phosphorylated by a xylose kinase 1 (FAM20B) and thereby terminates chain elongation. We isolated an oligosaccharide from the mouse liver, which was not detected in EXTL2 knock-out mice. Based on structural analysis by a combination of glycosidase digestion and 500-MHz (1)H NMR spectroscopy, the oligosaccharide was found to be GlcNAcα1-4GlcUAß1-3Galß1-3Galß1-4Xyl(2-O-phosphate), which was considered to be a biosynthetic intermediate of an immature GAG chain. Indeed, EXTL2 specifically transferred a GlcNAc residue to a phosphorylated linkage tetrasaccharide, GlcUAß1-3Galß1-3Galß1-4Xyl(2-O-phosphate). Remarkably, the phosphorylated linkage pentasaccharide generated by EXTL2 was not used as an acceptor for heparan sulfate or chondroitin sulfate polymerases. Moreover, production of GAGs was significantly higher in EXTL2 knock-out mice than in wild-type mice. These results indicate that EXTL2 functions to suppress GAG biosynthesis that is enhanced by a xylose kinase and that the EXTL2-dependent mechanism that regulates GAG biosynthesis might be a "quality control system" for proteoglycans.


Assuntos
Regulação Enzimológica da Expressão Gênica , Glicosaminoglicanos/metabolismo , Proteínas de Membrana/metabolismo , N-Acetilglucosaminiltransferases/metabolismo , Fosfotransferases/metabolismo , Xilose/química , Alelos , Animais , Clonagem Molecular , Fibroblastos/metabolismo , Genes Supressores de Tumor , Genômica , Glicosiltransferases/metabolismo , Células HeLa , Humanos , Fígado/metabolismo , Camundongos , Camundongos Knockout , Mutação , N-Acetilglucosaminiltransferases/genética , Proteoglicanas/metabolismo , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA