Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 620: 49-55, 2022 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-35777134

RESUMO

The tension in the stress fibers (SFs) of cells plays a pivotal role in determining biological processes such as cell migration, morphological formation, and protein synthesis. Our previous research developed a method to evaluate the cellular contraction force generated in SFs based on photoelasticity-associated retardation of polarized light; however, we employed live cells, which could have caused an increase in retardation and not contraction force. Therefore, the present study aimed to confirm that polarized light retardation increases inherently due to contraction, regardless of cell activity. We also explored the reason why retardation increased with SF contractions. We used SFs physically isolated from vascular smooth muscle cells to stop cell activity. The retardation of SFs was measured after ATP administration, responsible for contracting SFs. The SFs were imaged under optical and electron microscopes to measure SF length, width, and retardation. The retardation of isolated SFs after ATP administration was significantly higher than before. Thus, we confirmed that retardation increased with elevated tension in individual SFs. Furthermore, the SF diameter decreased while the SF length remained almost constant. Thus, we conclude that a contraction force-driven increase in the density of SFs is the main factor for the rise in polarized light retardation.


Assuntos
Miócitos de Músculo Liso , Fibras de Estresse , Trifosfato de Adenosina/metabolismo , Movimento Celular , Miócitos de Músculo Liso/fisiologia , Fibras de Estresse/metabolismo , Estresse Mecânico
2.
Cell Mol Bioeng ; 14(4): 309-320, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34295442

RESUMO

INTRODUCTION: Metastasis is a process in which cancer cells spread from the primary focus site to various other organ sites. Many studies have suggested that reduced stiffness would facilitate passing through extracellular matrix when cancer cells instigate a metastatic process. Here we investigated the compressive properties of melanoma cancer cells with different metastatic potentials at the whole-cell level. Differences in their compressive properties were analyzed by examining actin filament structure and actin-related gene expression. METHODS: Compressive tests were carried out for two metastatic B16 melanoma variants (B16-F1 and B16-F10) to characterize global compressive properties of cancer cells. RNA-seq analysis and fluorescence microscopic imaging were performed to clarify contribution of actin filaments to the global compressive properties. RESULTS: RNA-seq analysis and fluorescence microscopic imaging revealed the undeveloped structure of actin filaments in B16-F10 cells. The Young's modulus of B16-F10 cells was significantly lower than that of B16-F1 cells. Disruption of the actin filaments in B16-F1 cells reduced the Young's modulus to the same level as that of B16-F10 cells, while the Young's modulus in B16-F10 cells remained the same regardless of the disruption. CONCLUSIONS: In B16 melanoma cancer cell lines, cells with higher metastatic potential were more deformable at the whole-cell level with undeveloped actin filament structure, even when highly deformed. These results imply that invasive cancer cells may gain the ability to inhibit actin filament development. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at (10.1007/s12195-021-00677-w).

3.
Micromachines (Basel) ; 10(3)2019 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-30934576

RESUMO

Metastatic cancer cells are known to have a smaller cell stiffness than healthy cells because the small stiffness is beneficial for passing through the extracellular matrix when the cancer cells instigate a metastatic process. Here we developed a simple and handy microfluidic system to assess metastatic capacity of the cancer cells from a mechanical point of view. A tapered microchannel was devised through which a cell was compressed while passing. Two metastasis B16 melanoma variants (B16-F1 and B16-F10) were examined. The shape recovery process of the cell from a compressed state was evaluated with the Kelvin⁻Voigt model. The results demonstrated that the B16-F10 cells showed a larger time constant of shape recovery than B16-F1 cells, although no significant difference in the initial strain was observed between B16-F1 cells and B16-F10 cells. We further investigated effects of catechin on the cell deformability and found that the deformability of B16-F10 cells was significantly decreased and became equivalent to that of untreated B16-F1 cells. These results addressed the utility of the present system to handily but roughly assess the metastatic capacity of cancer cells and to investigate drug efficacy on the metastatic capacity.

4.
Gen Thorac Cardiovasc Surg ; 66(9): 523-528, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29956049

RESUMO

OBJECTIVES: Stentless bioprosthetic valves provide hemodynamic advantages over stented valves as well as excellent durability. However, some primary tissue failures in bioprostheses have been reported. This study was conducted to evaluate the morphometrical and biomechanical properties of the stentless Medtronic Freestyle™ aortic root bioprosthesis, to identify any arising problem areas, and to speculate on a potential solution. METHODS: The three-dimensional heterogeneity of the stentless bioprosthesis wall was investigated using computed tomography. The ascending aorta and the right, left, and non-coronary sinuses of Valsalva were resected and examined by an indentation test to evaluate their biomechanical properties. RESULTS: The non-coronary sinus of Valsalva was significantly thinner than the right sinus of Valsalva (p < 0.01). Young's modulus, calculated as an indicator of elasticity, was significantly greater at the non-coronary sinus of Valsalva (430.7 ± 374.2 kPa) than at either the left (190.6 ± 70.6 kPa, p < 0.01) or right sinuses of Valsalva (240.0 ± 56.5 kPa, p < 0.05). CONCLUSIONS: Based on the morphometrical and biomechanical analyses of the stentless bioprosthesis, we demonstrated that there are differences in wall thickness and elasticity between each sinus of Valsalva. These differences suggest that the non-coronary sinus of Valsalva is the most vulnerable and at greater risk of tissue failure. The exclusion of the non-coronary sinus of Valsalva may be beneficial to mitigate the long-term risks of tissue failure in the stentless bioprosthesis.


Assuntos
Estenose da Valva Aórtica/diagnóstico por imagem , Estenose da Valva Aórtica/fisiopatologia , Bioprótese , Implante de Prótese de Valva Cardíaca/instrumentação , Próteses Valvulares Cardíacas , Seio Aórtico/diagnóstico por imagem , Idoso , Aorta , Estenose da Valva Aórtica/cirurgia , Fenômenos Biomecânicos , Módulo de Elasticidade , Feminino , Hemodinâmica , Humanos , Masculino , Desenho de Prótese , Seio Aórtico/fisiopatologia , Stents , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA