Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pediatr Res ; 95(6): 1536-1542, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38267709

RESUMO

BACKGROUND: We previously reported that hydrogen (H2) gas combined with therapeutic hypothermia (TH) improved short-term neurological outcomes in asphyxiated piglets. However, the effect on seizure burden was unclear. Using amplitude-integrated electroencephalography (aEEG), we compared TH + H2 with TH alone in piglets 24 h after hypoxic-ischemic (HI) insult. METHODS: After a 40-min insult and resuscitation, 36 piglets ≤24 h old were divided into three groups: normothermia (NT, n = 14), TH alone (33.5 ± 0.5 °C, 24 h, n = 13), and TH + H2 (2.1-2.7% H2 gas, 24 h, n = 9). aEEG was recorded for 24 h post-insult and its background pattern, status epilepticus (SE; recurrent seizures lasting >5 min), and seizure occurrence (Sz; occurring at least once but not fitting the definition of SE) were evaluated. Background findings with a continuous low voltage and burst suppression were considered abnormal. RESULTS: The percentage of piglets with an abnormal aEEG background (aEEG-BG), abnormal aEEG-BG+Sz and SE was lower with TH + H2 than with TH at 24 h after HI insult. The duration of SE was shorter with TH + H2 and significantly shorter than with NT. CONCLUSIONS: H2 gas combined with TH ameliorated seizure burden 24 h after HI insult. IMPACT: In this asphyxiated piglet model, there was a high percentage of animals with an abnormal amplitude-integrated electroencephalography background (aEEG-BG) after hypoxic-ischemic (HI) insult, which may correspond to moderate and severe hypoxic-ischemic encephalopathy (HIE). Therapeutic hypothermia (TH) was associated with a low percentage of piglets with EEG abnormalities up to 6 h after HI insult but this percentage increased greatly after 12 h, and TH was not effective in attenuating seizure development. H2 gas combined with TH was associated with a low percentage of piglets with an abnormal aEEG-BG and with a shorter duration of status epilepticus at 24 h after HI insult.


Assuntos
Animais Recém-Nascidos , Eletroencefalografia , Hidrogênio , Hipotermia Induzida , Hipóxia-Isquemia Encefálica , Convulsões , Animais , Hipotermia Induzida/métodos , Suínos , Convulsões/terapia , Hipóxia-Isquemia Encefálica/terapia , Hipóxia-Isquemia Encefálica/fisiopatologia , Modelos Animais de Doenças , Asfixia Neonatal/terapia , Asfixia Neonatal/fisiopatologia , Asfixia Neonatal/complicações , Asfixia/complicações , Asfixia/terapia , Estado Epiléptico/terapia , Estado Epiléptico/fisiopatologia
2.
Neonatology ; 121(2): 195-202, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38043512

RESUMO

INTRODUCTION: The effects of hydrocortisone (HDC) administration to extremely low birth weight (ELBW) infants on later development remain unclear. This study examined the association between HDC dosage during neonatal period and neurodevelopmental outcomes in ELBW infants. METHODS: This study was a retrospective cohort study conducted in eight centers in Japan. The subjects of this study were ELBW infants born between April 2015 and March 2017. The association between postnatal total HDC dosage up to 36 weeks postmenstrual age and the developmental quotient (DQ) at 3 years of age was examined. Multiple linear regression evaluated the association, adjusting for weeks of gestation, birth weight, and the presence of bronchopulmonary dysplasia, late-onset circulatory collapse, intracranial hemorrhage, necrotizing enterocolitis, and sepsis. RESULTS: This study included 218 ELBW infants, of whom 144 underwent a developmental test at 3 years of age. Simple linear regression analysis revealed a significant association between total HDC dosage and DQ at 3 years of age (coefficients: -2.65, 95% CI: -3.73, -1.57). Multiple linear regression analysis adjusted for the presence of bronchopulmonary dysplasia and late-onset circulatory collapse also revealed a significant association between total HDC dosage and DQ at 3 years of age (coefficients: -2.66, 95% CI: -3.89, -1.42). CONCLUSION: Higher total HDC dosage up to 36 weeks postmenstrual age in ELBW infants was associated with impaired neurodevelopmental outcomes. Although HDC is often needed in the treatment of ELBW infants, clinicians should be aware that an increased dose of HDC may be associated with impaired neurodevelopmental outcomes.


Assuntos
Displasia Broncopulmonar , Choque , Lactente , Humanos , Recém-Nascido , Recém-Nascido de Peso Extremamente Baixo ao Nascer , Hidrocortisona , Estudos Retrospectivos
3.
Cytotherapy ; 22(4): 180-192, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32139242

RESUMO

Perinatal bronchopulmonary dysplasia (BPD) is defined as lung injury in preterm infants caused by various factors, resulting in serious respiratory dysfunction and high mortality. The administration of mesenchymal stem/stromal cells (MSCs) to treat/prevent BPD has proven to have certain therapeutic effects. However, MSCs can only weakly regulate macrophage function, which is strongly involved in the development of BPD. 7ND-MSCs are MSCs transfected with 7ND, a truncated version of CC chemokine ligand 2 (CCL2) that promotes macrophage activation, using a lentiviral vector. In the present study, we show in a BPD rat model that 7ND-MSC administration, but not MSCs alone, ameliorated the impaired alveolarization evaluated by volume density and surface area in the lung tissue, as well as pulmonary artery remodeling and pulmonary hypertension induced by BPD. In addition, 7ND-MSCs, but not MSCs alone, reduced M1 macrophages and the messenger RNA expressions of interleukin-6 and CCL2 in the lung tissue. Thus, the present study showed the treatment effect of 7ND-MSCs in a BPD rat model, which was more effective than that of MSCs alone.


Assuntos
Displasia Broncopulmonar/terapia , Quimiocina CCL2/antagonistas & inibidores , Quimiocina CCL2/genética , Hipertensão Pulmonar/terapia , Transplante de Células-Tronco Mesenquimais/métodos , Proteínas Mutantes/metabolismo , Transdução Genética , Animais , Quimiocina CCL2/metabolismo , Modelos Animais de Doenças , Feminino , Células HEK293 , Humanos , Ativação de Macrófagos/genética , Macrófagos/metabolismo , Masculino , Ratos , Ratos Wistar , Receptores CCR2/antagonistas & inibidores , Transfecção , Remodelação Vascular/genética
4.
Stem Cells Dev ; 29(2): 63-74, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31801412

RESUMO

Recently, cell therapy has been developed as a novel treatment for perinatal hypoxic-ischemic encephalopathy (HIE), which is an important cause of neurological disorder and death, and stem cells from human exfoliated deciduous teeth (SHED) express early markers for mesenchymal and neuroectodermal stem cells. We investigated the treatment effect of SHED for HIE in neonatal rats. Seven-day-old rats underwent ligation of the left carotid artery and were exposed to 8% hypoxic treatment. SHED (1 × 105 cells) were injected via the right external jugular vein 24 h after the insult. The effect of intravenous administration of SHED cells was evaluated neurologically and pathophysiologically. In the evaluation of engraftment using quantum dots 655, only a few SHED were detected in the injured cortex. In the immunohistological evaluation 24 h after injection, the numbers of positive cells of active caspase-3 and anti-4 hydroxynonenal antiserum were lower in the SHED group than in the vehicle group. The number of Iba-1+ cells in the cortex was higher in the SHED group. However, the proportion of M1 microglia (Iba-1+/ED-1+) was significantly decreased, whereas M2 microglia (Iba-1+/CD206+) tended to increase in the SHED group. In the behavioral tests performed 5 months after hypoxic treatment, compared to the vehicle group, the SHED group showed significant elongation of the endurance time in the rotarod treadmill test, significantly ameliorated proportion of using the impaired hand in the cylinder test, significantly lower ratio of right/left front paw area in gait analysis, and significantly higher avoidance rate in the active avoidance test. In the in vitro experiment with cultured neurons exposed to oxygen-glucose deprivation, we confirmed the neuroprotective effect of the condition medium of SHED. These results suggested that intravenous administration of SHED exerted a treatment effect both histologically and functionally, possibly via a paracrine effect.


Assuntos
Hipóxia-Isquemia Encefálica/terapia , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/citologia , Dente Decíduo/citologia , Administração Intravenosa , Animais , Animais Recém-Nascidos , Aprendizagem da Esquiva/fisiologia , Células Cultivadas , Criança , Modelos Animais de Doenças , Humanos , Hipóxia-Isquemia Encefálica/fisiopatologia , Masculino , Células-Tronco Mesenquimais/metabolismo , Microglia/metabolismo , Atividade Motora/fisiologia , Ratos Wistar , Transplante Heterólogo/métodos , Resultado do Tratamento
6.
Front Neurol ; 9: 987, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30559704

RESUMO

Background/Objective: Perinatal hypoxic-ischemia (HI) causes neonatal death and permanent neurological deficits. Cell therapy using various cell sources has been recently identified as a novel therapy for perinatal HI. Among the available types of cell sources, bone marrow-derived mononuclear cells (BMMNCs) have unique features for clinical application. For example, stem cells can be collected after admission, thus enabling us to perform autologous transplantation. This study aimed to investigate whether the administration of BMMNCs ameliorated HI brain injury in a neonatal rat model. Methods: Seven-day-old rats underwent left carotid artery ligation and were exposed to 8% oxygen for 60 min. BMMNCs were collected from the femurs and tibias of juvenile rats using the Ficoll-Hypaque technique and injected intravenously 24 h after the insult (1 × 105 cells). Active caspase-3, as an apoptosis marker, and ED1, as an activated microglia/macrophage marker, were evaluated immunohistochemically 48 h after the insult (vehicle, n = 9; BMMNC, n = 10). Behavioral assessments using the rotarod treadmill, gait analysis, and active avoidance tests were initiated 3 weeks after the insult (sham, n = 9, vehicle, n = 8; BMMNC, n = 8). After these behavioral tests (6 weeks after the insult), we evaluated the volumes of their hippocampi, cortices, thalami, striata, and globus pallidus. Results: The mean cell densities of the sum of four parts that were positive for active caspase-3 significantly decreased in the BMMNC group (p < 0.05), whereas in the hippocampi, cortices, thalami, and striata cell densities decreased by 42, 60, 56, and 47%, respectively, although statistical significance was not attained. The number of ED1 positive cells for the sum of the four parts also significantly decreased in the BMMNC group compared to the vehicle group (p < 0.05), whereas in each of the four parts the decrease was 35, 39, 47, and 36%, respectively, although statistical significance was not attained. In gait analysis, the BMMNC normalized the contact area of the affected hind paw widened by HI. The volumes of the affected striata and globus pallidus were significantly larger in the BMMNC group than in the control group. Conclusion: These results indicated that the injection of BMMNCs ameliorated HI brain injury in a neonatal rat model.

7.
Front Neurol ; 9: 757, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30254603

RESUMO

Perinatal hypoxic-ischemic (HI) brain injury occurs in 1 in 1,000 live births and remains the main cause of neurological disability and death in term infants. Cytotherapy has recently emerged as a novel treatment for tissue injury. In particular, mesenchymal stem cells (MSCs) are thought to have therapeutic potential, but little is known about the differences according to their origin. In the current study, we investigated the therapeutic effects and safety of intravenous injection of allogeneic bone marrow-derived MSCs (BM-MSCs) and adipose-derived stem cells (ADSCs) in a rat model of HI brain injury. HI models were generated by ligating the left carotid artery of postnatal day 7 Wistar/ST rats and exposing them to 8% hypoxia for 60 min. Bone marrow and adipose tissue were harvested from adult green fluorescent protein transgenic Wistar rats, and cells were isolated and cultured to develop BM-MSCs and ADSCs. At passaging stages 2-3, 1 × 105 cells were intravenously injected into the external right jugular vein of the HI rats at 4 or 24 h after hypoxia. Brain damage was evaluated by counting the number of cells positive for active caspase-3 in the entire dentate gyrus. Microglial isotypes and serum cytokines/chemokines were also evaluated. Distribution of each cell type after intravenous injection was investigated pathologically and bio-optically by ex vivo imaging (IVIS®) with a fluorescent lipophilic tracer DiR. The mortality rate was higher in the ADSC group compared to the BM-MSC group, in pups injected with cells 4 h after hypoxia. The number of active caspase-3-positive cells significantly decreased in the BM-MSC group, and the percentage of M1 microglia (a proinflammatory isotype) was also lower in the BM-MSC vs control group in the penumbra of the cortex. Moreover, BM-MSC administration increased anti-inflammatory cytokine and growth factor levels, while ADSCs did not. Each injected cell type was mainly distributed in the lungs and liver, but ADSCs remained in the lungs longer. Pathologically, pulmonary embolisms and diffuse alveolar hemorrhages were seen in the ADSC group. These results indicated that injection of allogeneic BM-MSCs ameliorated neonatal HI brain injury, whereas ADSCs induced severe lung hemorrhage and higher mortality.

8.
PLoS One ; 13(2): e0192688, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29438425

RESUMO

OBJECTIVE: The aim of this prospective multicenter randomized controlled trial was to compare the efficacy of silver nitrate cauterization against that of topical steroid ointment in the treatment of neonatal umbilical granuloma. METHODS: An open-label, non-inferiority randomized controlled trial was conducted from January 2013 to January 2016. The primary endpoint for the silver nitrate cauterization and topical steroid ointment groups was the healing rate after 2 weeks of treatment, applying a non-inferiority margin of 10%. The healing rate was evaluated until completion of 3 weeks of treatment. RESULTS: Participants comprised 207 neonates with newly diagnosed umbilical granuloma, randomized to receive silver nitrate cauterization (n = 104) or topical steroid ointment (n = 103). Healing rates after 2 weeks of treatment were 87.5% (91/104) in the silver nitrate cauterization and 82% (82/100) in the topical steroid ointment group group. The difference between groups was -5.5% (95% confidence interval, -19.1%, 8.4%), indicating that the non-inferiority criterion was not met. After 3 weeks of treatment, the healing rate with topical steroid ointment treatment was almost identical to that of silver nitrate cauterization (94/104 [90.4%] vs. 91/100 [91.0%]; 0.6% [-13.2 to 14.3]). No major complications occurred in either group. CONCLUSIONS: This study did not establish non-inferiority of topical steroid ointment treatment relative to silver nitrate cauterization, presumably due to lower healing rates than expected leading to an underpowered trial. However, considering that silver nitrate cauterization carries a distinct risk of chemical burns and that the overall efficacy of topical steroid ointment treatment is similar to that of silver nitrate cauterization, topical steroid ointment might be considered as a good alternative in the treatment of neonatal umbilical granuloma due to its safety and simplicity. To clarify non-inferiority, a larger study is needed.


Assuntos
Granuloma/tratamento farmacológico , Nitrato de Prata/administração & dosagem , Esteroides/administração & dosagem , Umbigo/patologia , Feminino , Humanos , Recém-Nascido , Masculino , Estudos Prospectivos
9.
Dev Neurosci ; 39(1-4): 273-286, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28273662

RESUMO

Neonatal hypoxic-ischemic (HI) encephalopathy (HIE) remains a major cause of mortality and persistent neurological disabilities in affected individuals. At present, hypothermia is considered to be the only applicable treatment option, although growing evidence suggests that cell-based therapy might achieve better outcomes. Dedifferentiated fat (DFAT) cells are derived from mature adipocytes via a dedifferentiation strategy called ceiling culture. Their abundance and ready availability might make them an ideal therapeutic tool for the treatment of HIE. In the present study, we aimed to determine whether the outcome of HIE can be improved by DFAT cell treatment. HI injury was achieved by ligating the left common carotid artery in 7-day-old rat pups, followed by 1-h exposure to 8% O2. Subsequently, the severity of damage was assessed by diffusion-weighted magnetic resonance imaging to assign animals to equivalent groups. 24 h after hypoxia, DFAT cells were injected at 105 cells/pup into the right external jugular vein. To evaluate brain damage in the acute phase, a group of animals was sacrificed 48 h after the insult, and paraffin sections of the brain were stained to assess several acute injury markers. In the chronic phase, the behavioral outcome was measured by performing a series of behavioral tests. From the 24th day of age, the sensorimotor function was examined by evaluating the initial forepaw placement on a cylinder wall and the latency to falling from a rotarod treadmill. The cognitive function was tested with the novel object recognition (NOR) test. In vitro conditioned medium (CM) prepared from cultured DFAT cells was added at various concentrations to neuronal cell cultures, which were then exposed to oxygen-glucose deprivation (OGD). The number of cells that stained positive for the apoptosis marker active caspase-3 decreased by 73 and 52% in the hippocampus and temporal cortex areas of the brain, respectively, in the DFAT-treated pups. Similarly, the numbers of ED-1-positive cells (activated microglia) decreased by 66 and 44%, respectively, in the same areas in the DFAT-treated group. The number of cells positive for the oxidative stress marker 4-hydroxyl-2-nonenal decreased by 68 and 50% in the hippocampus and the parietal cortex areas, respectively, in the DFAT-treated group. The HI insult led to a motor deficit according to the rotarod treadmill and cylinder test, where it significantly affected the vehicle group, whereas no difference was confirmed between the DFAT and sham groups. However, the NOR test indicated no significant differences between any of the groups. DFAT treatment did not reduce the infarct volume, which was confirmed immunohistochemically. According to in vitro experiments, the cell death rates in the DFAT-CM-treated cells were significantly lower than those in the controls when DFAT-CM was added 48 h prior to OGD. The treatment effect of adding DFAT-CM 24 h prior to OGD was also significant. Our results indicate that intravenous injection with DFAT cells is effective for ameliorating HI brain injury, possibly via paracrine effects.


Assuntos
Adipócitos/transplante , Hipóxia-Isquemia Encefálica/patologia , Transplante de Células-Tronco/métodos , Animais , Animais Recém-Nascidos , Desdiferenciação Celular , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA