Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
J Transl Med ; 22(1): 321, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38555418

RESUMO

BACKGROUND: Colorectal cancer (CRC) is the third most prevalent cancer globally, and liver metastasis (CRLM) is the primary cause of death. Hence, it is essential to discover novel prognostic biomarkers and therapeutic drugs for CRLM. METHODS: This study developed two liver metastasis-associated prognostic signatures based on differentially expressed genes (DEGs) in CRLM. Additionally, we employed an interpretable deep learning model utilizing drug sensitivity databases to identify potential therapeutic drugs for high-risk CRLM patients. Subsequently, in vitro and in vivo experiments were performed to verify the efficacy of these compounds. RESULTS: These two prognostic models exhibited superior performance compared to previously reported ones. Obatoclax, a BCL-2 inhibitor, showed significant differential responses between high and low risk groups classified by prognostic models, and demonstrated remarkable effectiveness in both Transwell assay and CT26 colorectal liver metastasis mouse model. CONCLUSIONS: This study highlights the significance of developing specialized prognostication approaches and investigating effective therapeutic drugs for patients with CRLM. The application of a deep learning drug response model provides a new drug discovery strategy for translational medicine in precision oncology.


Assuntos
Neoplasias Colorretais , Neoplasias Hepáticas , Animais , Camundongos , Humanos , Medicina de Precisão , Prognóstico , Neoplasias Hepáticas/genética , Descoberta de Drogas , Neoplasias Colorretais/genética
2.
J Control Release ; 365: 654-667, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38030081

RESUMO

Peptide immune checkpoint inhibitors in cancer immunotherapy have attracted great attention recently, but oral delivery of these peptides remains a huge challenge due to the harsh gastrointestinal environment, large molecular size, high hydrophilic, and poor transmembrane permeability. Here, for the first time, a fish oil-based microemulsion was developed for oral delivery of programmed death-1/programmed cell death-ligand 1 (PD-1/PD-L1) blocking model peptide, OPBP-1. The delivery system was characterized, in vitro and in vivo studies were conducted to evaluate its overall implication. As a result, this nutraceutical microemulsion was easily formed without the need of co-surfactants, and it appeared light yellow, transparent, good flowability with a particle size of 152 ± 0.73 nm, with a sustained drug release manner of 56.45 ± 0.36% over 24 h and a great stability within the harsh intestinal environment. It enhanced intestinal drug uptake and transportation over human intestinal epithelial Caco-2 cells, and drastically elevated the oral peptide bioavailability of 4.1-fold higher than that of OPBP-1 solution. Meanwhile, the mechanism of these dietary droplets permeated over the intestinal enterocytic membrane was found via clathrin and caveolae-mediated endocytic pathways. From the in vivo studies, the microemulsion facilitated the infiltration of CD8+ T lymphocytes in tumors, with increased interferon-γ (IFN-γ) secretion. Thus, it manifested a promising immune anti-tumor effect and significantly inhibited the growth of murine colonic carcinoma (CT26). Furthermore, it was found that the fish oil could induce ferroptosis in tumor cells and exhibited synergistic effect with OPBP-1 for cancer immunotherapy. In conclusion, this fish oil-based formulation demonstrated great potential for oral delivery of peptides with its natural property in reactive oxygen species (ROS)-related ferroptosis of tumor cells, which provides a great platform for functional green oral delivery system in cancer immunotherapy.


Assuntos
Ferroptose , Neoplasias , Humanos , Animais , Camundongos , Receptor de Morte Celular Programada 1 , Células CACO-2 , Óleos de Peixe , Antígeno B7-H1 , Peptídeos , Imunoterapia , Linhagem Celular Tumoral
4.
Biochem Pharmacol ; 217: 115800, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37696459

RESUMO

GPR81, initially discovered in adipocytes, has been found to suppress lipolysis when activated. However, the current small molecules that target GPR81 carry the risk of off-target effects, and their impact on tumor progression remains uncertain. Here, we utilized phage display technology to screen a GPR81-targeting peptide named 7w-2 and proceeded to demonstrate its bioactivity. Although 7w-2 did not affect the proliferation of tumor cells, it effectively reduced adipocyte catabolism in vitro, consequently restraining the proliferation of co-cultured tumor cells. Furthermore, our findings revealed that 7w-2 could inhibit lipolysis in vivo, leading to a significant impediment in tumor growth and metastasis in the 4T1 murine tumor model. Additionally, 7w-2 exhibited the ability to significantly elevate the proportion and functionality of CD8+ T cells. Our study introduces 7w-2 as the first peptide targeting GPR81, shedding light on its potential role in adipocytes in suppressing tumor progression.


Assuntos
Linfócitos T CD8-Positivos , Receptores Acoplados a Proteínas G , Camundongos , Animais , Receptores Acoplados a Proteínas G/metabolismo , Adipócitos/metabolismo , Lipólise , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Peptídeos/metabolismo
5.
J Immunother Cancer ; 11(6)2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37344099

RESUMO

BACKGROUND: Aside from immune checkpoint inhibitors targeting programmed cell death protein 1 (PD-1) and programmed death ligand 1 (PD-L1), intervention of CD47/Sirpα mediated 'don't eat me' signal between macrophage and tumor cell is considered as a promising therapeutic approach for cancer immunotherapy. Compared with CD47, the novel immune checkpoint CD24/Siglec-10 can also deliver 'don't eat me' signal and CD24 shows much lower expression level in normal tissue which might avoid unwanted side effects. METHODS: Cell-based phage display biopanning and D-amino acid modification strategy were used to identify the CD24/Siglec-10 blocking peptide. Cell-based blocking assay and microscale thermophoresis assay were used to validate the blocking and binding activities of the peptide. Phagocytosis and co-culture assays were used to explore the in vitro function of the peptide. Flow cytometry was performed to assess the immune microenvironment after the peptide treatment in vivo. RESULTS: A CD24/Siglec-10 blocking peptide (CSBP) with hydrolysis-resistant property was identified. Surprisingly, we found that CSBP could not only block the interaction of CD24/Siglec-10 but also PD-1/PD-L1. CSBP could induce the phagocytosis of tumor cell by both the macrophages and monocytic myeloid-derived suppressor cells (M-MDSCs), which can further activate CD8+ T cells. Besides, combination of radiotherapy and CSBP synergistically reduced tumor growth and altered the tumor microenvironment in both anti-PD-1-responsive MC38 and anti-PD-1-resistant 4T1 tumor models. CONCLUSIONS: In summary, this is the first CD24/Siglec-10 blocking peptide which blocked PD-1/PD-L1 interaction as well, functioned via enhancing the phagocytosis of tumor cells by macrophages and M-MDSCs, and elevating the activity of CD8+ T cells for cancer immunotherapy.


Assuntos
Antígeno CD47 , Neoplasias , Humanos , Antígeno B7-H1 , Antígeno CD24/metabolismo , Antígeno CD47/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Imunoterapia , Neoplasias/radioterapia , Neoplasias/tratamento farmacológico , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/uso terapêutico , Microambiente Tumoral
6.
Sci China Life Sci ; 66(10): 2310-2328, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37115491

RESUMO

Although immune checkpoint inhibition has been shown to effectively activate antitumor immunity in various tumor types, only a small subset of patients can benefit from PD-1/PD-L1 blockade. CD47 expressed on tumor cells protects them from phagocytosis through interaction with SIRPα on macrophages, while PD-L1 dampens T cell-mediated tumor killing. Therefore, dual targeting PD-L1 and CD47 may improve the efficacy of cancer immunotherapy. A chimeric peptide Pal-DMPOP was designed by conjugating the double mutation of CD47/SIRPα blocking peptide (DMP) with the truncation of PD-1/PD-L1 blocking peptide OPBP-1(8-12) and was modified by a palmitic acid tail. Pal-DMPOP can significantly enhance macrophage-mediated phagocytosis of tumor cells and activate primary T cells to secret IFN-γ in vitro. Due to its superior hydrolysis-resistant activity as well as tumor tissue and lymph node targeting properties, Pal-DMPOP elicited stronger anti-tumor potency than Pal-DMP or OPBP-1(8-12) in immune-competent MC38 tumor-bearing mice. The in vivo anti-tumor activity was further validated in the colorectal CT26 tumor model. Furthermore, Pal-DMPOP mobilized macrophage and T-cell anti-tumor responses with minimal toxicity. Overall, the first bispecific CD47/SIRPα and PD-1/PD-L1 dual-blockade chimeric peptide was designed and exhibited synergistic anti-tumor efficacy via CD8+ T cell activation and macrophage-mediated immune response. The strategy could pave the way for designing effective therapeutic agents for cancer immunotherapy.


Assuntos
Neoplasias , Receptor de Morte Celular Programada 1 , Humanos , Animais , Camundongos , Antígeno CD47/genética , Antígeno B7-H1 , Fagocitose , Imunoterapia , Neoplasias/patologia
7.
J Exp Clin Cancer Res ; 42(1): 51, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36850011

RESUMO

BACKGROUND: Esophageal squamous cell carcinoma (ESCC) is a common gastrointestinal malignancy with poor patient prognosis. Current treatment for ESCC, including immunotherapy, is only beneficial for a small subset of patients. Better characterization of the tumor microenvironment (TME) and the development of novel therapeutic targets are urgently needed. METHODS: In the present study, we hypothesized that integration of single-cell transcriptomic sequencing and large microarray sequencing of ESCC biopsies would reveal the key cell subtypes and therapeutic targets that determine the prognostic and tumorigenesis of ESCC. We characterized the gene expression profiles, gene sets enrichment, and the TME landscape of a microarray cohort including 84 ESCC tumors and their paired peritumor samples. We integrated single-cell transcriptomic sequencing and bulk microarray sequencing of ESCC to reveal key cell subtypes and druggable targets that determine the prognostic and tumorigenesis of ESCC. We then designed and screened a blocking peptide targeting Chemokine C-C motif ligand 18 (CCL18) derived from tumor associated macrophages and validated its potency by MTT assay. The antitumor activity of CCL18 blocking peptide was validated in vivo by using 4-nitroquinoline-1-oxide (4-NQO) induced spontaneous ESCC mouse model. RESULTS: Comparative gene expression and cell-cell interaction analyses revealed dysregulated chemokine and cytokine pathways during ESCC carcinogenesis. TME deconvolution and cell interaction analyses allow us to identify the chemokine CCL18 secreted by tumor associated macrophages could promote tumor cell proliferation via JAK2/STAT3 signaling pathway and lead to poor prognosis of ESCC. The peptide Pep3 could inhibit the proliferation of EC-109 cells promoted by CCL18 and significantly restrain the tumor progression in 4-NQO-induced spontaneous ESCC mouse model. CONCLUSIONS: For the first time, we discovered and validated that CCL18 blockade could significantly prevent ESCC progression. Our study revealed the comprehensive cell-cell interaction network in the TME of ESCC and provided novel therapeutic targets and strategies to ESCC treatment.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Animais , Camundongos , Carcinogênese , Transformação Celular Neoplásica , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas do Esôfago/genética , Transcriptoma , Microambiente Tumoral/genética , Macrófagos Associados a Tumor , Quimiocina CCL18/metabolismo
8.
J Immunother Cancer ; 10(11)2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36323433

RESUMO

BACKGROUND: The development of cancer is largely dependent on the accumulation of somatic mutations, indicating the potential to develop cancer chemoprevention agents targeting mutation drivers. However, ideal cancer chemoprevention agents that can effectively inhibit the mutation drivers have not been identified yet. METHODS: The somatic mutation signatures and expression analyses of APOBEC3B were performed in patient with pan-cancer. The computer-aided screening and skeleton-based searching were performed to identify natural products that can inhibit the activity of APOBEC3B. 4-nitroquinoline-1-oxide (4-NQO)-induced spontaneous esophageal squamous cell carcinoma (ESCC) and azoxymethane/dextran sulfate sodium (AOM/DSS)-induced spontaneous colon cancer mouse models were conducted to investigate the influences of APOBEC3B inhibitor on the prevention of somatic mutation accumulation and cancer progression. RESULTS: Here, we discovered that the cytidine deaminase APOBEC3B correlated somatic mutations were widely observed in a variety of cancers, and its overexpression indicated poor survival. SMC247 (3, 5-diiodotyrosine), as a source of kelp iodine without side effects, could strongly bind APOBEC3B (KD=65 nM) and effectively inhibit its deaminase activity (IC50=1.69 µM). Interestingly, 3, 5-diiodotyrosine could significantly reduce the clusters of mutations, prevent the precancerous lesion progression, and prolong the survival in 4-NQO-induced spontaneous ESCC and AOM/DSS-induced spontaneous colon cancer mouse models. Furthermore, 3, 5-diiodotyrosine could reduce colitis, increase the proportion and function of T lymphocytes via IL-15 in tumor microenvironment. The synergistic cancer prevention effects were observed when 3, 5-diiodotyrosine combined with PD-1/PD-L1 blockade. CONCLUSIONS: This is the first prove-of-concept study to elucidate that the natural product 3, 5-diiodotyrosine could prevent somatic mutation accumulation and cancer progression through inhibiting the enzymatic activity of APOBEC3B. In addition, 3, 5-diiodotyrosine could reduce the colitis and increase the infiltration and function of T lymphocytes via IL-15 in tumor microenvironment. 3, 5-diiodotyrosine combined with PD-1/PD-L1 blockade could elicit synergistic cancer prevention effects, indicating a novel strategy for both prevent the somatic mutation accumulation and the immune-suppressive microenvironment exacerbation.


Assuntos
Produtos Biológicos , Colite , Neoplasias do Colo , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Animais , Camundongos , Azoximetano , Antígeno B7-H1/genética , Colite/induzido quimicamente , Di-Iodotirosina/genética , Interleucina-15/genética , Antígenos de Histocompatibilidade Menor/genética , Acúmulo de Mutações , Receptor de Morte Celular Programada 1/genética , Microambiente Tumoral
9.
Pharmaceuticals (Basel) ; 15(5)2022 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-35631431

RESUMO

A low response rate limits the application of immune checkpoint inhibitors (ICIs) in the treatment of esophageal adenocarcinoma (EAC), which requires the precise characterization of heterogeneous tumor microenvironments. This study aimed to identify the molecular features and tumor microenvironment compositions of EAC to facilitate patient stratification and provide novel strategies to improve clinical outcomes. Here, we performed consensus molecular subtyping with nonnegative matrix factorization (NMF) using EAC data from the Cancer Genome Atlas (TCGA) and identified two distinct subtypes with significant prognostic differences and differences in tumor microenvironments. The findings were further validated in independent EAC cohorts and potential response to ICI therapy was estimated using Tumor Immune Dysfunction and Exclusion (TIDE) and SubMap methods. Our findings suggest that EAC patients of subtype 2 with low levels of cancer-associated fibroblasts, tumor associated macrophages (TAMs), and MDSCs in the tumor microenvironment may benefit from PD-1 blockade therapy, while patients of subtype 1 are more responsive to chemotherapy or combination therapy. These findings might improve our understanding of immunotherapy efficacy and be useful in the development of new strategies to better guide immunotherapy and targeted therapy in the treatment of EAC.

10.
Acta Pharm Sin B ; 11(9): 2835-2849, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34589400

RESUMO

Tryptophan 2,3-dioxygnease 2 (TDO2) is specific for metabolizing tryptophan to kynurenine (KYN), which plays a critical role in mediating immune escape of cancer. Although accumulating evidence demonstrates that TDO2 overexpression is implicated in the development and progression of multiple cancers, its tumor-promoting role in esophageal squamous cell carcinoma (ESCC) remains unclear. Here, we observed that TDO2 was overexpressed in ESCC tissues and correlated significantly with lymph node metastasis, advanced clinical stage, and unfavorable prognosis. Functional experiments showed that TDO2 promoted tumor cell proliferation, migration, and colony formation, which could be prevented by inhibition of TDO2 and aryl hydrocarbon receptor (AHR). Further experimentation demonstrated that TDO2 could promote the tumor growth of KYSE150 tumor-bearing model, tumor burden of C57BL/6 mice with ESCC induced by 4-NQO, enhance the expression of phosphorylated AKT, with subsequent phosphorylation of GSK3ß, and polarization of M2 macrophages by upregulating interleukin-8 (IL-8) to accelerate tumor progression in the tumor microenvironment (TME). Collectively, our results discovered that TDO2 could upregulate IL-8 through AKT/GSK3ß to direct the polarization of M2 macrophages in ESCC, and suggested that TDO2 could represent as an attractive therapeutic target and prognostic marker to ESCC.

11.
Biomolecules ; 11(9)2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34572586

RESUMO

Metformin is a widely used antidiabetic drug for cancer prevention and treatment. However, the overproduction of lactic acid and its inefficiency in cancer therapy limit its application. Here, we demonstrate the synergistic effects of the lactate/GPR81 blockade (3-hydroxy-butyrate, 3-OBA) and metformin on inhibiting cancer cells growth in vitro. Simultaneously, this combination could inhibit glycolysis and OXPHOS metabolism, as well as inhibiting tumor growth and reducing serum lactate levels in tumor-bearing mice. Interestingly, we observed that this combination could enhance the functions of Jurkat cells in vitro and CD8+ T cells in vivo. In addition, considering that 3-OBA could recover the inhibitory effects of metformin on PD-1 expression, we further determined the dual blockade effects of PD-1/PD-L1 and lactate/GPR81 on the antitumor activity of metformin. Our results suggested that this dual blockade strategy could remarkably enhance the anti-tumor effects of metformin, or even lead to tumor regression. In conclusion, our study has proposed a novel and robust strategy for a future application of metformin in cancer treatment.


Assuntos
Antineoplásicos/farmacologia , Antígeno B7-H1/metabolismo , Ácido Láctico/metabolismo , Metformina/farmacologia , Receptor de Morte Celular Programada 1/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Ácido 3-Hidroxibutírico/farmacologia , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sinergismo Farmacológico , Feminino , Humanos , Ativação Linfocitária/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Camundongos Nus , Transdução de Sinais/efeitos dos fármacos , Linfócitos T/efeitos dos fármacos
12.
Theranostics ; 11(15): 7308-7321, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34158852

RESUMO

Dendritic cells (DCs) can process the antigens of cancer vaccine and thus stimulate the CD8+ T cells to recognize and kill the tumor cells that express these antigens. However, lack of promising carriers for presenting the antigens to DCs is one of the main barriers to the development of clinically effective cancer vaccines. Another limitation is the risk of inflammatory side effects induced by the adjuvants. It is still unclear how we can develop ideal adjuvant-free DC vaccine carriers without adjuvants. Methods: A 12-mer peptide carrier (CBP-12) with high affinity for Clec9a expressed on DCs was developed using an in silico rational optimization method. The therapeutic effects of the adjuvant-free vaccine comprising CBP-12 and exogenous or endogenous antigenic peptides were investigated in terms of antigen cross-presentation efficacy, specific cytotoxic T lymphocyte response, and antitumor activity. We also explored the mechanism involved in the antitumor effects of the adjuvant-free CBP-12 vaccine. Finally, we assessed the effects of the CBP-12 conjugated peptide vaccine combined with radiotherapy. Results: Here, we developed CBP-12 as a vaccine carrier that enhanced the uptake and cross-presentation of the antigens, thus inducing strong CD8+ T cell responses and antitumor effects in both anti-PD-1-responsive (B16-OVA) and -resistant (B16) models, even in adjuvant-free conditions. CBP-12 bound to and activated Clec9a, thereby stimulating Clec9a+ DC to product IL-21, but not IL-12 by activating of Syk. The antitumor effects of the CBP-12 conjugated peptide vaccines could be blocked by an IL-21 neutralizing antibody. We also observed the synergistic antitumor effects of the CBP-12 conjugated peptide vaccine combined with radiotherapy. Conclusions: CBP-12 could serve as an adjuvant-free peptide vaccine carrier for cancer immunotherapy.


Assuntos
Vacinas Anticâncer , Células Dendríticas/imunologia , Sistemas de Liberação de Medicamentos , Interleucinas/imunologia , Lectinas Tipo C/imunologia , Melanoma Experimental/imunologia , Peptídeos , Receptores Imunológicos/imunologia , Transdução de Sinais/efeitos dos fármacos , Quinase Syk/imunologia , Animais , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/farmacologia , Feminino , Interleucinas/genética , Lectinas Tipo C/genética , Melanoma Experimental/genética , Melanoma Experimental/terapia , Camundongos , Camundongos Knockout , Peptídeos/imunologia , Peptídeos/farmacologia , Receptores Imunológicos/genética , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Quinase Syk/genética , Vacinas de Subunidades Antigênicas/imunologia , Vacinas de Subunidades Antigênicas/farmacologia
13.
J Control Release ; 334: 376-388, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-33940058

RESUMO

Blockade of the immune checkpoint PD-1/PD-L1 with monoclonal antibodies demonstrated unprecedented clinical efficacies in many cancers. But the orally available low molecular weight inhibitors remain infancy. Compared to small molecules, peptide exhibits better selectivity and fewer side effects, but poor half-life and a big challenge to be orally administrated. Here, we developed a proteolysis-resistant D peptide OPBP-1 (Oral PD-L1 Binding Peptide 1) which could selectively bind PD-L1, significantly block PD-1/PD-L1 interaction and enhance IFN-γ (interferon γ) secretion from CD8+ T cells in human PBMCs (Peripheral blood mononuclear cells). OPBP-1 could significantly inhibit tumor growth in murine colorectal CT26 and melanoma B16-OVA models at a relatively low dose of 0.5 mg/kg, with enhancing the infiltration and function of CD8+ T cells. More interestingly, oral delivery of OPBP-1 loaded TMC (N, N, N-trimethyl chitosan) hydrogel (OPBP-1@TMC) showed promising OPBP-1 oral bioavailability (52.8%) and prolonged half-life (14.55 h) in rats, and also significantly inhibited tumor growth in CT26 model. In conclusion, we discovered and optimized a PD-1/PD-L1 blocking peptide OPBP-1, and subsequently loaded into a TMC based hydrogel oral delivery system, in order to maximally elevate the oral bioavailability of the peptide drug and effectively inhibit tumor growth. These results opened up a new prospect for oral drug development in cancer immunotherapy.


Assuntos
Quitosana , Neoplasias , Animais , Antígeno B7-H1 , Linfócitos T CD8-Positivos , Hidrogéis , Imunoterapia , Leucócitos Mononucleares , Camundongos , Neoplasias/tratamento farmacológico , Peptídeos , Receptor de Morte Celular Programada 1 , Ratos
14.
Front Immunol ; 11: 02193, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33133063

RESUMO

Whole genome/exome sequencing data for tumors are now abundant, and many tumor antigens, especially mutant antigens (neoantigens), have been identified for cancer immunotherapy. However, only a small fraction of the peptides from these antigens induce cytotoxic T cell responses. Therefore, efficient methods to identify these antigenic peptides are crucial. The current models of major histocompatibility complex (MHC) binding and antigenic prediction are still inaccurate. In this study, 360 9-mer peptides with verified immunological activity were selected to construct a prediction of tumor neoantigen (POTN) model, an immunogenic prediction model specifically for the human leukocyte antigen-A2 allele. Based on the physicochemical properties of amino acids, such as the residue propensity, hydrophobicity, and organic solvent/water, we found that the predictive capability of POTN is superior to that of the prediction programs SYPEITHI, IEDB, and NetMHCpan 4.0. We used POTN to screen peptides for the cancer-testis antigen located on the X chromosome, and we identified several peptides that may trigger immunogenicity. We synthesized and measured the binding affinity and immunogenicity of these peptides and found that the accuracy of POTN is higher than that of NetMHCpan 4.0. Identifying the properties related to the T cell response or immunogenicity paves the way to understanding the MHC/peptide/T cell receptor complex. In conclusion, POTN is an efficient prediction model for screening high-affinity immunogenic peptides from tumor antigens, and thus provides useful information for developing cancer immunotherapy.


Assuntos
Antígenos de Neoplasias/imunologia , Antígeno HLA-A2/imunologia , Modelos Imunológicos , Peptídeos/imunologia , Neoplasias Testiculares/imunologia , Antígenos de Neoplasias/genética , Antígeno HLA-A2/genética , Humanos , Masculino , Peptídeos/genética , Neoplasias Testiculares/genética
15.
Acta Pharm Sin B ; 10(6): 1047-1060, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32642411

RESUMO

PD-1 and CTLA-4 antibodies offer great hope for cancer immunotherapy. However, many patients are incapable of responding to PD-1 and CTLA-4 blockade and show low response rates due to insufficient immune activation. The combination of checkpoint blockers has been proposed to increase the response rates. Besides, antibody drugs have disadvantages such as inclined to cause immune-related adverse events and infiltration problems. In this study, we developed a cyclic peptide C25 by using Ph.D.-C7C phage display technology targeting LAG-3. As a result, C25 showed a relative high affinity with human LAG-3 protein and could effectively interfere the binding between LAG-3 and HLA-DR (MHC-II). Additionally, C25 could significantly stimulate CD8+ T cell activation in human PBMCs. The results also demonstrated that C25 could inhibit tumor growth of CT26, B16 and B16-OVA bearing mice, and the infiltration of CD8+ T cells was significantly increased while FOXP3+ Tregs significantly decreased in the tumor site. Furthermore, the secretion of IFN-γ by CD8+ T cells in spleen, draining lymph nodes and especially in the tumors was promoted. Simultaneously, we exploited T cells depletion models to study the anti-tumor mechanisms for C25 peptide, and the results combined with MTT assay confirmed that C25 exerted anti-tumor effects via CD8+ T cells but not direct killing. In conclusion, cyclic peptide C25 provides a rationale for targeting the immune checkpoint, by blockade of LAG-3/HLA-DR interaction in order to enhance anti-tumor immunity, and C25 may provide an alternative for cancer immunotherapy besides antibody drugs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA