Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Exp Gerontol ; 189: 112409, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38522483

RESUMO

Among all non-communicable diseases, Cardiovascular Diseases (CVDs) stand as the leading global cause of mortality. Within this spectrum, Myocardial Infarction (MI) strikingly accounts for over 15 % of all deaths. The intricate web of risk factors for MI, comprising family history, tobacco use, oral health, hypertension, nutritional pattern, and microbial infections, is firmly influenced by the human gut and oral microbiota, their diversity, richness, and dysbiosis, along with their respective metabolites. Host genetic factors, especially allelic variations in signaling and inflammatory markers, greatly affect the progression or severity of the disease. Despite the established significance of the human microbiome-nutrient-metabolite interplay in associations with CVDs, the unexplored terrain of the gut-heart-oral axis has risen as a critical knowledge gap. Moreover, the pivotal role of the microbiome and the complex interplay with host genetics, compounded by age-related changes, emerges as an area of vital importance in the development of MI. In addition, a distinctive disease susceptibility and severity influenced by gender-based or ancestral differences, adds a crucial insights to the association with increased mortality. Here, we aimed to provide an overview on interactions of microbiome (oral and gut) with major risk factors (tobacco use, alcohol consumption, diet, hypertension host genetics, gender, and aging) in the development of MI and therapeutic regulation.


Assuntos
Microbioma Gastrointestinal , Hipertensão , Microbiota , Infarto do Miocárdio , Humanos , Fatores de Risco
2.
Nat Commun ; 12(1): 547, 2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33483510

RESUMO

Elevated plasma cholesterol and type 2 diabetes (T2D) are associated with coronary artery disease (CAD). Individuals treated with cholesterol-lowering statins have increased T2D risk, while individuals with hypercholesterolemia have reduced T2D risk. We explore the relationship between lipid and glucose control by constructing network models from the STARNET study with sequencing data from seven cardiometabolic tissues obtained from CAD patients during coronary artery by-pass grafting surgery. By integrating gene expression, genotype, metabolomic, and clinical data, we identify a glucose and lipid determining (GLD) regulatory network showing inverse relationships with lipid and glucose traits. Master regulators of the GLD network also impact lipid and glucose levels in inverse directions. Experimental inhibition of one of the GLD network master regulators, lanosterol synthase (LSS), in mice confirms the inverse relationships to glucose and lipid levels as predicted by our model and provides mechanistic insights.


Assuntos
Glicemia/metabolismo , Doença da Artéria Coronariana/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Glucose/metabolismo , Metabolismo dos Lipídeos , Modelos Biológicos , Animais , Colesterol/sangue , Doença da Artéria Coronariana/sangue , Doença da Artéria Coronariana/genética , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/genética , Feminino , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla/métodos , Humanos , Hipercolesterolemia/sangue , Hipercolesterolemia/genética , Hipercolesterolemia/metabolismo , Camundongos Endogâmicos C57BL , Polimorfismo de Nucleotídeo Único
3.
PeerJ ; 6: e4466, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29527417

RESUMO

RNA editing modifies transcripts and may alter their regulation or function. In humans, the most common modification is adenosine to inosine (A-to-I). We examined the global characteristics of RNA editing in 4,301 human tissue samples. More than 1.6 million A-to-I edits were identified in 62% of all protein-coding transcripts. mRNA recoding was extremely rare; only 11 novel recoding sites were uncovered. Thirty single nucleotide polymorphisms from genome-wide association studies were associated with RNA editing; one that influences type 2 diabetes (rs2028299) was associated with editing in ARPIN. Twenty-five genes, including LRP11 and PLIN5, had editing sites that were associated with plasma lipid levels. Our findings provide new insights into the genetic regulation of RNA editing and establish a rich catalogue for further exploration of this process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA