Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Eur J Pharm Biopharm ; 198: 114257, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38479564

RESUMO

The use of plants such as giant hogweed as raw materials for the manufacture of dosage forms has been little explored. In this study, we utilized furanocoumarins from the Heracleum sosnowskyi plant to create an experimental emulsion dosage form (EmFHS). The EmFHS was finely dispersed (481.8 nm ± 71.1 nm), shelf-stable, and contained predominantly 8-methoxypsoralen at a concentration of 1 mg/ml. Phototoxicity analysis of EmFHS for THP-1 cells under UV (365 nm) irradiation showed an IC50 of 19.1 µg/ml (24 h) and 6.3 µg/ml (48 h). In relation to spheroids (L929), EmFHS exhibited a phototoxic effect in the concentration range of 31.25-125 µg/ml8-MOP. A full phototoxic effect was observed 48 h after UV irradiation. The phototoxic effect of EmFHS in vitro was dose-dependent and comparable to the effect of emulsion synthetic 8-methoxypsoralen and chlorin e6 solution. EmFHS cytotoxicity was caused solely by UV radiation, and toxicity in the dark was minimal. EmFHS, administered at a dose of 3 mg/kg8-MOP, was found to be safe after a single intravenous administration to rats. It had a photosensitizing effect in the form of local photodermatitis when exposed to UV irradiation at a dose of 44 J/cm2. The biokinetics of emulsion furanocoumarins showed that the phototoxic effect of EmFHS is due to the high penetration ability of the emulsion into cells of spheroids. At the same time, it has a low degree of cumulation when administered intravenously. The obtained data suggest that EmFHS may be a promising treatment for PUVA therapy of various dermatological diseases. Additionally, the plant Heracleum sosnowskyi shows potential as a basis for creating new dosage forms with phototherapeutic effects.


Assuntos
Furocumarinas , Heracleum , Ratos , Animais , Fármacos Fotossensibilizantes , Metoxaleno , Emulsões
2.
Int J Mol Sci ; 24(17)2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37686471

RESUMO

The behavior and migration of human mesenchymal stromal cells (hMSCs) are focal points of research in the biomedical field. One of the major aspects is potential therapy using hMCS, but at present, the safety of their use is still controversial owing to limited data on changes that occur with hMSCs in the long term. Fluorescent photoconvertible proteins are intensively used today as "gold standard" to mark the individual cells and study single-cell interactions, migration processes, and the formation of pure lines. A crucial disadvantage of this method is the need for genetic modification of the primary culture, which casts doubt on the possibility of exploring the resulting clones in personalized medicine. Here we present a new approach for labeling and tracking hMSCs without genetic modification based on the application of cell-internalizable photoconvertible polyelectrolyte microcapsules (size: 2.6 ± 0.5 µm). These capsules were loaded with rhodamine B, and after thermal treatment, exhibited fluorescent photoconversion properties. Photoconvertible capsules demonstrated low cytotoxicity, did not affect the immunophenotype of the hMSCs, and maintained a high level of fluorescent signal for at least seven days. The developed approach was tested for cell tracking for four days and made it possible to trace the destiny of daughter cells without the need for additional labeling.


Assuntos
Células-Tronco Mesenquimais , Humanos , Cápsulas , Comunicação Celular , Rastreamento de Células , Células Clonais , Corantes
3.
Int J Mol Sci ; 24(3)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36769101

RESUMO

Complex immunosuppressive therapy is prescribed in medical practice to patients with glomerulonephritis to help them overcome symptoms and prevent chronic renal failure. Such an approach requires long-term systemic administration of strong medications, which causes severe side effects. This work shows the efficiency of polymer capsule accumulation (2.8 ± 0.4 µm) containing labeled etanercept (100 µg per dose) in the kidneys of mice. The comparison of injection into the renal artery and tail vein shows the significant superiority of the intra-arterial administration strategy. The etanercept retention rate of 18% and 8% ID in kidneys was found 1 min and 1 h after injection, respectively. The capsules were predominantly localized in the glomeruli after injection in mice using a model of acute glomerulonephritis. Histological analysis confirmed a significant therapeutic effect only in animals with intra-arterial administration of microcapsules with etanercept. The proposed strategy combines endovascular surgery and the use of polymer microcapsules containing a high molecular weight drug that can be successfully applied to treat a wide range of kidney diseases associated with glomerular pathology.


Assuntos
Glomerulonefrite , Camundongos , Animais , Etanercepte/uso terapêutico , Cápsulas , Glomerulonefrite/patologia , Rim/patologia , Glomérulos Renais/patologia
4.
ACS Appl Mater Interfaces ; 14(46): 51579-51592, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36367877

RESUMO

A new promising trend in personalized medicine is the use of autologous cells (macrophages or stem cells) for cell-based therapy and also as a "Trojan horse" for targeted delivery of a drug carrier. The natural ability of macrophages for chemotaxis allows them to deliver cargo to the damaged area, significantly reducing side effects on healthy organ tissues. Therefore, it is important to develop tools to track their behavior in the organism. While labeled containers can serve as anchored tags for imaging macrophages in vivo, they can affect the properties and functions of macrophages. This work demonstrates that 3 µm sized capsules based on biocompatible polyelectrolytes and fluorescently labeled with both Cy7 and RITC dyes do not affect cell functionalization in vitro, such as viability, proliferation, and movement of transformed monocyte/macrophage-like cells (RAW 264.7) and primary bone marrow derived macrophages (BMDM) at maximal loading of five capsules per cell. In addition, capsules allowed fluorescent detection of ex vivo loaded cells 24 h after the tail vein injection in vivo and visualization of microcapsule-laden macrophages ex vivo using confocal microscopy. We have delivered about 62.5% of injected BMDM containing 12.5 million capsules with 3.75 µg of high-molecular-weight cargo (0.3 pg/capsule) to the liver. Our results demonstrate that 3 µm polyelectrolyte fluorescently labeled microcapsules can be used for safe macrophage loading, allowing cell tracking and drug delivery, which will facilitate development of macrophage-based cell therapy protocols.


Assuntos
Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Cápsulas , Macrófagos , Rastreamento de Células
5.
Pharmaceutics ; 14(10)2022 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-36297579

RESUMO

In a modern high-tech medicine, drug-eluting polymer coatings are actively used to solve a wide range of problems, including the prevention of post-surgery infection, inflammatory, restenosis, thrombosis and many other implant-associated complications. For major assumptions, the drug elution mechanism is considered mainly to be driven by the degradation of the polymer matrix. This process is very environmentally dependent, unpredictable and often leads to a non-linear drug release kinetic. In the present work, we demonstrate how the laser microperforation of cargo-loaded biodegradable films could be used as a tool to achieve zero-order release kinetics with different elution rates. The effects of the laser-induced hole's diameter (10, 18, 22, 24 µm) and their density (0, 1, 2, 4 per sample) on release kinetic are studied. The linear dynamics of elution was measured for all perforation densities. Release rates were estimated to be 0.018 ± 0.01 µg/day, 0.211 ± 0.08 µg/day, 0.681 ± 0.1 µg/day and 1.19 ± 0.12 µg/day for groups with 0, 1, 2, 4 microperforations, respectively. The role of biodegradation of the polymer matrix is reduced only to the decomposition of the film over time with no major influence on elution rates.

6.
Pharmaceutics ; 14(10)2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36297621

RESUMO

Bladder neck contracture (BNC) is a complication of the surgical treatment of benign and malignant prostate conditions and is associated with the partial or complete blockage of urination. Correction of this condition usually requires repeated surgical intervention, which does not guarantee recovery. Balloon dilation is a minimally invasive alternative to the surgical dissection of tissues; however, it significantly reduces the patient's quality of life. Additional local anti-inflammatory treatment may reduce the number of procedures requested and increase the attractiveness of this therapeutic strategy. Here, we report about an ultrathin biocompatible coating based on polylactic acid for Foley catheter balloons that can provide localized release of Prednol-L in the range of 56-99 µg in the BNC zone under conventional diagnostic ultrasound exposure. Note that the exposure of a transrectal probe with a conventional gray-scale ultrasound regimen with and without shear wave elastography (SWE) was comparably effective for Prednol-L release from the coating surface of a Foley catheter balloon. This strategy does not require additional manipulations by clinicians. The trigger for the drug release is the ultrasound exposure, which is applied for visualization of the balloon's location during the dilation process. In vivo experiments demonstrated the absence of negative effects of the usage of a coated Foley catheter for balloon dilation of the bladder neck and urethra.

7.
Pharmaceutics ; 14(5)2022 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-35631642

RESUMO

The problem of reducing the side effects associated with drug distribution throughout the body in the treatment of various kidney diseases can be solved by effective targeted drug delivery. The method described herein involves injection of a drug encapsulated in polyelectrolyte capsules to achieve prolonged local release and long-term capillary retention of several hours while these capsules are administered via the renal artery. The proposed method does not imply disruption (puncture) of the renal artery or aorta and is suitable for long-term chronic experiments on mice. In this study, we compared how capsule size and dosage affect the target kidney blood flow. It has been established that an increase in the diameter of microcapsules by 29% (from 3.1 to 4.0 µm) requires a decrease in their concentration by at least 50% with the same suspension volume. The photoacoustic method, along with laser speckle contrast imaging, was shown to be useful for monitoring blood flow and selecting a safe dose. Capsules contribute to a longer retention of a macromolecular substance in the target kidney compared to its free form due to mechanical retention in capillaries and slow impregnation into surrounding tissues during the first 1-3 h, which was shown by fluorescence tomography and microscopy. At the same time, the ability of capillaries to perform almost complete "self-cleaning" from capsular shells during the first 12 h leads to the preservation of organ tissues in a normal state. The proposed strategy, which combines endovascular surgery and the injection of polymer microcapsules containing the active substance, can be successfully used to treat a wide range of nephropathies.

8.
Int J Mol Sci ; 23(8)2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35457052

RESUMO

In this study, we developed iron oxide nanoparticles stabilised with oleic acid/sodium oleate that could exert therapeutic effects for curing tumours via magnetic hyperthermia. A suspension of iron oxide nanoparticles was produced and characterised. The toxicity of the synthesised composition was examined in vivo and found to be negligible. Histological examination showed a low local irritant effect and no effect on the morphology of the internal organs. The efficiency of magnetic hyperthermia for the treatment of transplanted Walker 256 carcinoma was evaluated. The tumour was infiltrated with the synthesised particles and then treated with an alternating magnetic field. The survival rate was 85% in the studied therapy group of seven animals, while in the control group (without treatment), all animals died. The physicochemical and pharmaceutical properties of the synthesised fluid and the therapeutic results, as seen in the in vivo experiments, provide insights into therapeutic hyperthermia using injected magnetite nanoparticles.


Assuntos
Carcinoma , Hipertermia Induzida , Nanopartículas de Magnetita , Animais , Hipertermia , Hipertermia Induzida/métodos , Campos Magnéticos , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/uso terapêutico , Ácido Oleico
9.
ACS Biomater Sci Eng ; 7(11): 5206-5214, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34610738

RESUMO

Magnetic tissue engineering is one of the rapidly emerging and promising directions of tissue engineering and biofabrication where the magnetic field is employed as temporal removal support or scaffold. Iron oxide nanoparticles are used to label living cells and provide the desired magnetic properties. Recently, polymer microcapsules loaded with iron oxide nanoparticles have been proposed as a novel approach to designing magnetic materials with high local concentrations. These microcapsules can be readily internalized and retained intracellularly for a long time in various types of cells. The low cytotoxicity of these microcapsules was previously shown in 2D cell culture. This paper has demonstrated that cells containing these nontoxic nanomaterials can form viable 3D tissue spheroids for the first time. The spheroids retained labeled fluorescent microcapsules with magnetic nanoparticles without a detectable cytotoxic effect. The high concentration of packed nanoparticles inside the microcapsules enables the evident magnetic properties of the labeled spheroids to be maintained. Finally, magnetic spheroids can be effectively used for magnetic patterning and biofabrication of tissue-engineering constructs.


Assuntos
Nanopartículas Magnéticas de Óxido de Ferro , Polímeros , Cápsulas , Campos Magnéticos , Engenharia Tecidual
10.
ACS Appl Mater Interfaces ; 13(17): 19701-19709, 2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33900738

RESUMO

In modern biomedical science and developmental biology, there is significant interest in optical tagging to study individual cell behavior and migration in large cellular populations. However, there is currently no tagging system that can be used for labeling individual cells on demand in situ with subsequent discrimination in between and long-term tracking of individual cells. In this article, we demonstrate such a system based on photoconversion of the fluorescent dye rhodamine B co-confined with carbon nanodots in the volume of micron-sized polyelectrolyte capsules. We show that this new fluorescent convertible capsule coding system is robust and is actively uptaken by cell lines while demonstrating low toxicity. Using a variety of cellular lines, we demonstrate how this tagging system can be used for code-like marking and long-term tracking of multiple individual cells in large cellular populations.


Assuntos
Rastreamento de Células , Corantes Fluorescentes/química , Rodaminas/química , Animais , Carbono/química , Linhagem Celular , Linhagem Celular Tumoral , Humanos , Camundongos , Imagem Óptica , Polímeros/química , Pontos Quânticos/química
11.
J Mater Chem B ; 9(10): 2384-2393, 2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33554993

RESUMO

Focused ultrasound (FU) is in demand for clinical cancer therapy, but the possible thermal injury to the normal peripheral tissues limits the usage of the ablative FU for tumors with a large size; therefore research efforts have been made to minimize the possible side effects induced by the FU treatment. Non-ablative focused ultrasound assisted chemotherapy could open a new avenue for the development of cancer therapy technology. Here, low intensity focused ultrasound (LIFU) for controlled quick intracellular release of small molecules (Mw ≤ 1000 Da) without acute cell damage is demonstrated. The release is achieved by a composite poly(allylamine hydrochloride) (PAH)/poly-(sodium 4-styrenesulfonate) (PSS)/SiO2 microcapsules which are highly sensitive to LIFU and can be effectively broken by weak cavitation effects. Most PAH/PSS/SiO2 capsules in B50 rat neuronal cells can be ruptured and release rhodamine B (Rh-B) into the cytosol within only 30 s of 0.75 W cm-2 LIFU treatment, as demonstrated by the CLSM results. While the same LIFU treatment shows no obvious damage to cells, as proved by the live/dead experiment, showing that 90% of cells remain alive.


Assuntos
Espaço Intracelular/metabolismo , Bibliotecas de Moléculas Pequenas/metabolismo , Ondas Ultrassônicas , Animais , Transporte Biológico , Cápsulas , Linhagem Celular Tumoral , Cinética , Poliaminas/química , Poliestirenos/química , Ratos , Dióxido de Silício/química , Bibliotecas de Moléculas Pequenas/química
12.
Colloids Surf B Biointerfaces ; 199: 111548, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33421925

RESUMO

Magnetic hyperthermia (MH) is a perspective tool to treat the tumor while the magnetic material is delivered. The key problems in MH development is to ensure an effective local heating within cancer cell without overheating other cells. In order to do that one has to reach substantial local accumulation of magnetic nanoparticles (MNPs) and/or magnetically sensitive objects with advanced heat properties. Absorbing heat energy for destroying tumor cells can be generated only if there is sufficient amount of locally placed MNPs. In this work, we propose polyelectrolyte microcapsules modified with iron oxide nanoparticles as an approach to tie magnetic materials in high concentration locally. These microcapsules (about 3 microns in diameter) can be readily internalized by various cells. The human fibroblasts uptake of the microcapsules and cytotoxic effect upon the influence of alternating magnetic field (AMF) while magnetic capsules are inside the cells is under study in this work. The cytotoxicity of the magnetic microcapsules was compared with the cytotoxicity of the MNPs while free in the solution to evaluate the effect of bounding MNPs. A cytotoxic effect on cells was found in the case of preliminary incubation of fibroblasts with capsules while the AMF is applied. In the case of MNPs in an equivalent dose per mass of magnetic material, there was no cytotoxic effect noticed after the treatment with the field. It is noteworthy that during the treatment of cells with the AMF, the increase in temperature of the incubation medium was not registered. The morphological changes on fibroblasts were consistent with the data of the viability assessment. Thus, the synthesized capsules are shown as a means for local enhancement of magnetic hyperthermia in the treatment of tumor diseases.


Assuntos
Hipertermia Induzida , Nanopartículas de Magnetita , Cápsulas , Humanos , Campos Magnéticos , Polímeros
13.
Pharmaceutics ; 14(1)2021 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-35056938

RESUMO

Bacterial infections are a severe medical problem, especially in traumatology, orthopedics, and surgery. The local use of antibiotics-elution materials has made it possible to increase the effectiveness of acute infections treatment. However, the infection prevention problem remains unresolved. Here, we demonstrate the fabrication of polylactic acid (PLA) "smart" films with microchamber arrays. These microchambers contain ceftriaxone as a payload in concentrations ranging from 12 ± 1 µg/cm2 to 38 ± 8 µg/cm2, depending on the patterned film thickness formed by the different PLA concentrations in chloroform. In addition, the release profile of the antibiotic can be prolonged up to 72 h in saline. At the same time, on the surface of agar plates, the antibiotic release time increases up to 96 h, which has been confirmed by the growth suppression of the Staphylococcus aureus bacteria. The efficient loading and optimal release rate are obtained for patterned films formed by the 1.5 wt % PLA in chloroform. The films produced from 1.5 and 2 wt % PLA solutions (thickness-0.42 ± 0.12 and 0.68 ± 0.16 µm, respectively) show an accelerated ceftriaxone release upon the trigger of the therapeutic ultrasound, which impacted as an expansion of the bacterial growth inhibition zone around the samples. Combining prolonged drug elution with the on-demand release ability of large cargo amount opens up new approaches for personalized and custom-tunable antibacterial therapy.

14.
Small ; 16(3): e1904880, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31840408

RESUMO

Efficient delivery of genetic material to primary cells remains challenging. Here, efficient transfer of genetic material is presented using synthetic biodegradable nanocarriers, resembling extracellular vesicles in their biomechanical properties. This is based on two main technological achievements: generation of soft biodegradable polyelectrolyte capsules in nanosize and efficient application of the nanocapsules for co-transfer of different RNAs to tumor cell lines and primary cells, including hematopoietic progenitor cells and primary T cells. Near to 100% efficiency is reached using only 2.5 × 10-4 pmol of siRNA, and 1 × 10-3 nmol of mRNA per cell, which is several magnitude orders below the amounts reported for any of methods published so far. The data show that biodegradable nanocapsules represent a universal and highly efficient biomimetic platform for the transfer of genetic material with the utmost potential to revolutionize gene transfer technology in vitro and in vivo.


Assuntos
Portadores de Fármacos , Vesículas Extracelulares/metabolismo , Nanopartículas , Transfecção , Linhagem Celular Tumoral , Humanos , Cinética
15.
Biomater Sci ; 8(4): 1137-1147, 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-31584052

RESUMO

Synthetic organic and inorganic carriers often have limitations associated with problematic targeting ability or non-optimized pharmacokinetics, and, therefore, they have restricted therapeutic potential. Natural drug carriers (e.g. mesenchymal stem cells, MSCs) are able to migrate towards the tumor site and penetrate cancerous cells. These biomimetic features make MSCs an attractive delivery platform that allows achieving maximal therapeutic efficiency with minimal toxic side effects. A combination of MSCs exhibiting a homing effect on tumors with stimuli-responsive nanostructured carriers is foreseen to have a huge impact in the field of personalized oncology. Here we develop for the first time a light-sensitive biomimetic delivery platform based on MSCs impregnated with submicron sized composite capsules containing an antitumor drug. This cell-based delivery system triggers the release of the drug upon near-infrared (NIR) laser irradiation due to gold nanorods (Au NRs) incorporated into the capsule wall. The NIR-triggered release of the antitumor drug such as vincristine leads to the effective mortality of tumor spheroids made of primary melanoma cells. Encapsulated vincristine delivered by MSCs into the tumor spheroids and deployed over the whole spheroid upon NIR exposure represents a promising therapy for the improved treatment of malignant neoplasms.


Assuntos
Biomimética/métodos , Melanoma/terapia , Células-Tronco Mesenquimais/citologia , Esferoides Celulares/citologia , Vincristina/farmacologia , Cápsulas , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Ouro/química , Humanos , Luz , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/efeitos dos fármacos , Nanotubos , Tamanho da Partícula , Cultura Primária de Células , Esferoides Celulares/efeitos dos fármacos , Células Tumorais Cultivadas , Vincristina/química
16.
Colloids Surf B Biointerfaces ; 181: 680-687, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31226643

RESUMO

High intensity focused ultrasound (HIFU) is widely used in medical practice, including cancer therapy. Also this approach is promising for remote release of encapsulated drugs in various other biomedical applications where local treatment is needed. Our approach underpins the minimization of HIFU impact on possible degradation of biological tissues and expand the use of HIFU in the controlled release of encapsulated drugs. We demonstrated the efficient ultrasound-induced release of labeled protein (Cy7-BSA) from elaborated nanocomposite microcapsules in vitro an in vivo. The capsule fabrication was done using combination of recently developed freezing-induced loading (FIL) technique and Layer-by-Layer assembly (LbL) used for the preparation of complex multilayer BSA/tannic acid nanocomposite capsules sensitive to HIFU. These capsules contain NIR fluorescent Cy7-labeled BSA in the shell for tracking in vivo and the high concentration of labels inside the capsules resulted in self-quenching provides the real-time detection of the protein once it is released from the capsule. Ultrasound-induced release in vivo of Cy7-labeled BSA initially quenched by magnetite nanoparticles was confirmed by fluorescent tomography. The significant decrease of Cy7 fluorescence under HIFU treatment in vitro was found to be due to a generation of reactive oxygen species and fast dye oxidation. Our results demonstrate that adapted HIFU setup can be used for the directed release of encapsulated substances in vivo under tissue compatible NIR monitoring by fluorescent tomography.


Assuntos
Fluorescência , Ablação por Ultrassom Focalizado de Alta Intensidade , Nanopartículas de Magnetita/química , Animais , Cápsulas/química , Bovinos , Corantes Fluorescentes/química , Camundongos , Imagem Óptica , Tamanho da Partícula , Soroalbumina Bovina/química , Propriedades de Superfície
17.
ACS Appl Mater Interfaces ; 11(14): 13091-13104, 2019 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-30883080

RESUMO

An important area in modern malignant tumor therapy is the optimization of antitumor drugs pharmacokinetics. The use of some antitumor drugs is limited in clinical practice due to their high toxicity. Therefore, the strategy for optimizing the drug pharmacokinetics focuses on the generation of high local concentrations of these drugs in the tumor area with minimal systemic and tissue-specific toxicity. This can be achieved by encapsulation of highly toxic antitumor drug (vincristine (VCR) that is 20-50 times more toxic than widely used the antitumor drug doxorubicin) into nano- and microcarriers with their further association into therapeutically relevant cells that possess the ability to migrate to sites of tumor. Here, we fundamentally examine the effect of drug carrier size on the behavior of human mesenchymal stem cells (hMSCs), including internalization efficiency, cytotoxicity, cell movement, to optimize the conditions for the development of carrier-hMSCs drug delivery platform. Using the malignant tumors derived from patients, we evaluated the capability of hMSCs associated with VCR-loaded carriers to target tumors using a three-dimensional spheroid model in collagen gel. Compared to free VCR, the developed hMSC-based drug delivery platform showed enhanced antitumor activity regarding those tumors that express CXCL12 (stromal cell-derived factor-1 (SDF-1)) gene, inducing directed migration of hMSCs via CXCL12 (SDF-1)/CXCR4 pathway. These results show that the combination of encapsulated antitumor drugs and hMSCs, which possess the properties of active migration into tumors, is therapeutically beneficial and demonstrated high efficiency and low systematic toxicity, revealing novel strategies for chemotherapy in the future.


Assuntos
Sistemas de Liberação de Medicamentos , Células-Tronco Mesenquimais/química , Neoplasias/tratamento farmacológico , Vincristina/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Quimiocina CXCL12/genética , Colágeno/química , Colágeno/farmacologia , Portadores de Fármacos/química , Portadores de Fármacos/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Neoplasias/patologia , Cultura Primária de Células , Receptores CXCR4/genética , Transdução de Sinais/efeitos dos fármacos , Esferoides Celulares/efeitos dos fármacos , Vincristina/química
18.
Biomater Sci ; 7(6): 2358-2371, 2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-30916673

RESUMO

Polyelectrolyte multilayer (PEM) microchambers can provide a versatile cargo delivery system enabling rapid, site-specific drug release on demand. However, experimental evidence for their potential benefits in live human cells is scarce. Equally, practical applications often require substance delivery that is geometrically constrained and highly localized. Here, we establish human-cell biocompatibility and on-demand cargo release properties of the PEM or polylactic acid (PLA)-based microchamber arrays fabricated on a patterned film base. We grow human N2A cells (a neuroblastoma cell line widely used for studies of neurotoxicity) on the surface of the patterned microchamber arrays loaded with either a fluorescent indicator or the ubiquitous excitatory neurotransmitter glutamate. The differentiating human N2A cells show no detrimental effects on viability when growing on either PEM@PLA or PLA-based arrays for up to ten days in vitro. Firstly, we use two-photon (2P) excitation with femtosecond laser pulses to open individual microchambers in a controlled way while monitoring release and diffusion of the fluorescent cargo (rhodamine or FITC fluorescent dye). Secondly, we document the increases in intracellular Ca2+ in local N2A cells in response to the laser-triggered glutamate release from individual microchambers. The functional cell response is site-specific and reproducible on demand and could be replicated by applying glutamate to the cells using a pressurised micropipette. Time-resolved fluorescence imaging confirms the physiological range of the glutamate-evoked intracellular Ca2+ dynamics in the differentiating N2A cells. Our data indicate that the nano-engineering design of the fabricated PEM or PLA-based patterned microchamber arrays could provide a biologically safe and efficient tool for targeted, geometrically constrained drug delivery.


Assuntos
Microtecnologia/instrumentação , Neurônios/citologia , Polieletrólitos/química , Cálcio/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular , Preparações de Ação Retardada , Liberação Controlada de Fármacos , Ácido Glutâmico/química , Ácido Glutâmico/metabolismo , Humanos , Espaço Intracelular/metabolismo , Lasers , Poliésteres/química
19.
Macromol Rapid Commun ; 40(5): e1800200, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29770514

RESUMO

Layer-by-layer assembled polymeric multilayer capsules (PMC) of micrometer sizes are permeable for molecules below 1 KDa; therefore, the efficacy of such capsules in the delivery of low molecular weight water soluble bioactive compounds and drugs is frequently challenged. Thermally induced contraction of hollow PMC is explored here to enhance their loading efficacy with model compound, fluorescent rhodamine B (RhB). Four bilayered capsules obtained of poly(diallyldimethylammonium chloride)/polystyrene sulfonate ([PDADMAC/PSS]4 ) or poly-l-arginine/dextran sulfate ([PARG/DS]4 ) on sacrificial CaCO3 spherical microparticles are postloaded with RhB at ambient or elevated temperatures. The influence of heat on capsule loading is determined quantitatively by varying the amounts of capsules in the batch and keeping the concentration of RhB constant. The applied heat improves the loading efficacy of [PDADMAC/PSS]4 capsules at concentrations up to 2.25 × 109 capsules mL-1 , but has a reversed effect on [PARG/DS]4 capsules at all studied concentrations ((0-3.5) × 109 capsules mL-1 ).


Assuntos
Cápsulas/química , Temperatura Alta , Polímeros/química , Rodaminas/química , Sulfato de Dextrana/química , Peptídeos/química , Polietilenos/química , Poliestirenos/química , Compostos de Amônio Quaternário/química
20.
Mater Sci Eng C Mater Biol Appl ; 94: 647-655, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30423750

RESUMO

High frequency alternating magnetic fields (AMF) have been widely used as a non-invasive method to induce local hyperthermia for antitumor treatment and to efficiently trigger drug release from various carriers. However, few studies have exploited the potential of targeted drug delivery to healthy cells or tissue and the use of low frequency AMF (LF-AMF) for intracellular triggered release. To achieve this goal, doxycycline was delivered with the layer-by-layer (LbL) assembled magnetic microcapsules, and AMF with low frequency (50 Hz) was applied. The low frequency AMF had little effect on morphology of microcapsules, which upon exposure for 360 min caused no significant damage and had the advantage of minimizing heating effects. Nonetheless, microcapsule permeability increased as a function of exposure time when assessed using FITC-dextran (70 kDa) with the number of permeable microcapsules increased from 13.5% (20 min) to 52.8% (360 min). Increased permeability also enhanced in vitro doxycycline release in genetically engineered myoblast cells where EGFP expression is regulated by the tetracycline system, while targeted EGFP expression was observed by magnetically navigating the microcapsules to a site of interest. Upon LF-AMF exposure of 30 min, no cytotoxicity was observed, but intracellular doxycycline release was promoted and enhanced EGFP expression as demonstrated by EGFP fluorescence intensity measurement. This study reveals the possibility of targeted drug delivery and using LF-AMF as a non-cytotoxic intracellular trigger of drug release from microcapsules without alteration in cell viability.


Assuntos
Liberação Controlada de Fármacos , Campos Magnéticos , Animais , Cápsulas , Morte Celular/efeitos dos fármacos , Linhagem Celular , Doxiciclina/farmacologia , Proteínas de Fluorescência Verde/metabolismo , Cinética , Camundongos , Mioblastos/citologia , Mioblastos/efeitos dos fármacos , Permeabilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA